PHP机器学习库php-ml的简单测试和使用方法


Posted in PHP onJuly 14, 2017

php-ml是一个使用PHP编写的机器学习库。虽然我们知道,python或者是C++提供了更多机器学习的库,但实际上,他们大多都略显复杂,配置起来让很多新手感到绝望。

php-ml这个机器学习库虽然没有特别高大上的算法,但其具有最基本的机器学习、分类等算法,我们的小公司做一些简单的数据分析、预测等等都是够用的。我们的项目中,追求的应该是性价比,而不是过分的效率和精度。一些算法和库看上去非常厉害,但如果我们考虑快速上线,而我们的技术人员没有机器学习方面的经验,那么复杂的代码和配置反而会拖累我们的项目。而如果我们本身就是做一个简单的机器学习应用,那么研究复杂库和算法的学习成本很显然高了点,而且,项目出了奇奇怪怪的问题,我们能解决吗?需求改变了怎么办?相信大家都有过这种经历:做着做着,程序忽然报错,自己怎么都搞不清楚原因,上谷歌或百度一搜,只搜出一条满足条件的问题,在五年、十年前提问,然后零回复。。。

所以,选择最简单最高效、性价比最高的做法是必须的。php-ml的速度不算慢(赶紧换php7吧),而且精度也不错,毕竟算法都一样,而且php是基于c的。博主最看不惯的就是,拿python和Java,PHP之间比性能,比适用范围。真要性能,请你拿C开发。真要追求适用范围,也请用C,甚至汇编。。。

首先,我们要使用这个库,需要先下载这个库。在github可以下载到这个库文件(https://github.com/php-ai/php-ml)。当然,更推荐使用composer来下载该库,自动配置。

当下载好了以后,我们可以看一看这个库的文档,文档都是一些简单的小示例,我们可以自己建一个文件尝试一下。都浅显易懂。接下来,我们来拿实际的数据测试一下。数据集一个是Iris花蕊的数据集,另一个由于记录丢失,所以不知道是有关什么的数据了。。。

Iris花蕊部分数据,有三种不同的分类:

PHP机器学习库php-ml的简单测试和使用方法PHP机器学习库php-ml的简单测试和使用方法

不知名数据集,小数点被打成了逗号,所以计算时还需要处理一下:

PHP机器学习库php-ml的简单测试和使用方法PHP机器学习库php-ml的简单测试和使用方法

我们先处理不知名数据集。首先,我们的不知名数据集的文件名为data.txt。而这个数据集刚好可以先绘制成x-y折线图。所以,我们先将原数据绘制成一个折线图。由于x轴比较长,所以我们只需要看清楚它大致的形状即可:

PHP机器学习库php-ml的简单测试和使用方法

绘制采用了php的jpgraph库,代码如下:

<?php
include_once './src/jpgraph.php';
include_once './src/jpgraph_line.php';

$g = new Graph(1920,1080);//jpgraph的绘制操作
$g->SetScale("textint");
$g->title->Set('data');

//文件的处理
$file = fopen('data.txt','r');
$labels = array();
while(!feof($file)){
 $data = explode(' ',fgets($file));  
 $data[1] = str_replace(',','.',$data[1]);//数据处理,将数据中的逗号修正为小数点
 $labels[(int)$data[0]] = (float)$data[1];//这里将数据以键值的方式存入数组,方便我们根据键来排序
} 

ksort($labels);//按键的大小排序

$x = array();//x轴的表示数据
$y = array();//y轴的表示数据
foreach($labels as $key=>$value){
 array_push($x,$key);
 array_push($y,$value);
}


$linePlot = new LinePlot($y);
$g->xaxis->SetTickLabels($x); 
$linePlot->SetLegend('data');
$g->Add($linePlot);
$g->Stroke();

在有了这个原图做对比,我们接下来进行学习。我们采用php-ml中的LeastSquars来进行学习。我们测试的输出需要存入文件,方便我们可以画一个对比图。学习代码如下:

<?php
 require 'vendor/autoload.php';

 use Phpml\Regression\LeastSquares;
 use Phpml\ModelManager;

 $file = fopen('data.txt','r');
 $samples = array();
 $labels = array();
 $i = 0;
 while(!feof($file)){
  $data = explode(' ',fgets($file));
  $samples[$i][0] = (int)$data[0];
  $data[1] = str_replace(',','.',$data[1]);
  $labels[$i] = (float)$data[1];
  $i ++;
 } 
 fclose($file);

 $regression = new LeastSquares();
 $regression->train($samples,$labels);

 //这个a数组是根据我们对原数据处理后的x值给出的,做测试用。
 $a = [0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,20,22,23,24,25,26,27,29,30,31,37,40,41,45,48,53,55,57,60,61,108,124];
 for($i = 0; $i < count($a); $i ++){
  file_put_contents("putput.txt",($regression->predict([$a[$i]]))."\n",FILE_APPEND); //以追加的方式存入文件  
 }

之后,我们将存入文件的数据读出来,绘制一个图形,先贴最后的效果图:

PHP机器学习库php-ml的简单测试和使用方法

代码如下:

<?php
include_once './src/jpgraph.php';
include_once './src/jpgraph_line.php';

$g = new Graph(1920,1080);
$g->SetScale("textint");
$g->title->Set('data');

$file = fopen('putput.txt','r');
$y = array();
$i = 0;
while(!feof($file)){
 $y[$i] = (float)(fgets($file));
 $i ++;   
} 

$x = [0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,20,22,23,24,25,26,27,29,30,31,37,40,41,45,48,53,55,57,60,61,108,124];

$linePlot = new LinePlot($y);
$g->xaxis->SetTickLabels($x); 
$linePlot->SetLegend('data');
$g->Add($linePlot);
$g->Stroke();

可以发现,图形出入还是比较大的,尤其是在图形锯齿比较多的部分。不过,这毕竟是40组数据,我们可以看出,大概的图形趋势是吻合的。一般的库在做这种学习时,数据量低的情况下,准确度都非常低。要达到比较高的精度,需要大量的数据,万条以上的数据量是必要的。如果达不到这个数据要求,那我们使用任何库都是徒劳的。所以,机器学习的实践中,真正难的不在精度低、配置复杂等技术问题,而是数据量不够,或者质量太低(一组数据中无用的数据太多)。在做机器学习之前,对数据的预先处理也是必要的。

接下来,我们来对花蕊数据进行测试。一共三种分类,由于我们下载到的是csv数据,所以我们可以使用php-ml官方提供的操作csv文件的方法。而这里是一个分类问题,所以我们选择库提供的SVC算法来进行分类。我们把花蕊数据的文件名定为Iris.csv,代码如下:

<?php
require 'vendor/autoload.php';

use Phpml\Classification\SVC;
use Phpml\SupportVectorMachine\Kernel;
use Phpml\Dataset\CsvDataset;

$dataset = new CsvDataset('Iris.csv' , 4, false);
$classifier = new SVC(Kernel::LINEAR,$cost = 1000);
$classifier->train($dataset->getSamples(),$dataset->getTargets());

echo $classifier->predict([$argv[1],$argv[2],$argv[3],$argv[4]]);//$argv是命令行参数,调试这种程序使用命令行较方便

是不是很简单?短短12行代码就搞定了。接下来,我们来测试一下。根据我们上面贴出的图,当我们输入5 3.3 1.4 0.2的时候,输出应该是Iris-setosa。我们看一下:

PHP机器学习库php-ml的简单测试和使用方法

看,至少我们输入一个原来就有的数据,得到了正确的结果。但是,我们输入原数据集中没有的数据呢?我们来测试两组:

PHP机器学习库php-ml的简单测试和使用方法

由我们之前贴出的两张图的数据看,我们输入的数据在数据集中并不存在,但分类按照我们初步的观察来看,是合理的。

所以,这个机器学习库对于大多数的人来说,都是够用的。而大多数鄙视这个库鄙视那个库,大谈性能的人,基本上也不是什么大牛。真正的大牛已经忙着捞钱去了,或者正在做学术研究等等。我们更多的应该是掌握算法,了解其中的道理和玄机,而不是夸夸其谈。当然,这个库并不建议用在大型项目上,只推荐小型项目或者个人项目等。

jpgraph只依赖GD库,所以下载引用之后就可以使用,大量的代码都放在了绘制图形和初期的数据处理上。由于库的出色封装,学习代码并不复杂。需要所有代码或者测试数据集的小伙伴可以留言或者私信等,我提供完整的代码,解压即用

以上这篇PHP机器学习库php-ml的简单测试和使用方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

PHP 相关文章推荐
php GD绘制24小时柱状图
Jun 28 PHP
php debug 安装技巧
Apr 30 PHP
体育彩票排列三组选三算法分享
Mar 07 PHP
php设计模式之单例模式实例分析
Feb 25 PHP
php创建桌面快捷方式实现方法
Dec 31 PHP
CI配置多数据库访问的方法
Mar 28 PHP
php+redis在实际项目中HTTP 500: Internal Server Error故障排除
Feb 05 PHP
PHP设计模式之原型设计模式原理与用法分析
Apr 25 PHP
safari下载文件自动加了html后缀问题
Nov 09 PHP
PHP使用DOM对XML解析处理操作示例
Jul 04 PHP
php菜单/评论数据递归分级算法的实现方法
Aug 01 PHP
Yii 框架使用Forms操作详解
May 18 PHP
thinkphp3.2嵌入百度编辑器ueditor的实例代码
Jul 13 #PHP
PHP微信PC二维码登陆的实现思路
Jul 13 #PHP
PHP基于socket实现客户端和服务端通讯功能
Jul 13 #PHP
php中请求url的五种方法总结
Jul 13 #PHP
Laravel 5.4重新登录实现跳转到登录前页面的原理和方法
Jul 13 #PHP
php获取'/'传参的值简单方法
Jul 13 #PHP
php多文件打包下载的实例代码
Jul 12 #PHP
You might like
PHP入门教程之操作符与控制结构流程详解
2016/09/09 PHP
如何判断图片地址是否失效
2007/02/02 Javascript
JavaScript 异步调用框架 (Part 3 - 代码实现)
2009/08/04 Javascript
Whatever:hover 无需javascript让IE支持丰富伪类
2010/06/29 Javascript
JavaScript动态调整TextArea高度的代码
2010/12/28 Javascript
仿谷歌主页js动画效果实现代码
2013/07/14 Javascript
JavaScript表单通过正则表达式验证电话号码
2014/03/14 Javascript
Javascript常用小技巧汇总
2015/06/24 Javascript
JavaScript中解析JSON数据的三种方法
2015/07/03 Javascript
jQuery+HTML5加入购物车代码分享
2020/10/29 Javascript
基于JS实现PHP的sprintf函数实例
2015/11/14 Javascript
如何使用AngularJs打造权限管理系统【简易型】
2016/05/09 Javascript
JavaScript必知必会(二) null 和undefined
2016/06/08 Javascript
JS遍历ul下的li点击弹出li的索引的实现方法
2016/09/19 Javascript
Vue组件开发初探
2017/02/14 Javascript
详解Vue基于 Nuxt.js 实现服务端渲染(SSR)
2018/04/05 Javascript
vue webpack开发访问后台接口全局配置的方法
2018/09/18 Javascript
vue缓存的keepalive页面刷新数据的方法
2019/04/23 Javascript
uni-app微信小程序登录授权的实现
2020/05/22 Javascript
vue中封装axios并实现api接口的统一管理
2020/12/25 Vue.js
在Windows服务器下用Apache和mod_wsgi配置Python应用的教程
2015/05/06 Python
Python使用email模块对邮件进行编码和解码的实例教程
2016/07/01 Python
Python3学习笔记之列表方法示例详解
2017/10/06 Python
Python简单实现两个任意字符串乘积的方法示例
2018/04/12 Python
一些Centos Python 生产环境的部署命令(推荐)
2018/05/07 Python
spyder 在控制台(console)执行python文件,debug python程序方式
2020/04/20 Python
python3+openCV 获取图片中文本区域的最小外接矩形实例
2020/06/02 Python
Mavi牛仔裤美国官网:土耳其著名牛仔品牌
2016/09/24 全球购物
官方授权图形T恤和服装:Fifth Sun
2019/06/12 全球购物
BSTN意大利:德国街头和运动文化高品质商店
2020/12/22 全球购物
Myprotein亚太地区:欧洲第一在线运动营养品牌
2020/12/20 全球购物
报告会主持词
2014/04/02 职场文书
环保专项行动方案
2014/05/12 职场文书
民主评议党员总结
2014/10/20 职场文书
晚会开幕词
2015/01/28 职场文书
社区服务活动报告
2015/02/05 职场文书