pandas数据分组groupby()和统计函数agg()的使用


Posted in Python onMarch 04, 2021

数据分组

  • 使用 groupby() 方法进行分组
  • group.size()查看分组后每组的数量
  • group.groups 查看分组情况
  • group.get_group('名字') 根据分组后的名字选择分组数据

准备数据

# 一个Series其实就是一条数据,Series方法的第一个参数是data,第二个参数是index(索引),如果没有传值会使用默认值(0-N)
# index参数是我们自定义的索引值,注意:参数值的个数一定要相同。
# 在创建Series时数据并不一定要是列表,也可以将一个字典传进去。
from pandas import Series, DataFrame

# 使用字典创建
index_list = ['001', '002', '003', '004', '005', '006', '007', '008', '009', '010']
name_list = ['李白', '王昭君', '诸葛亮', '狄仁杰', '孙尚香', '妲己', '周瑜', '张飞', '王昭君', '大乔']
age_list = [25, 28, 27, 25, 30, 29, 25, 32, 28, 26]
gender_list = ['F', 'M', 'F', 'F', 'M', 'M', 'F', 'F', 'M', 'M']
salary_list = ['10k', '12.5k', '20k', '14k', '12k', '17k', '18k', '21k', '22k', '21.5k']
marital_list = ['NO', 'NO', 'YES', 'YES', 'NO', 'NO', 'NO', 'YES', 'NO', 'YES']
dic = {
 '姓名': Series(data=name_list, index=index_list),
 '年龄': Series(data=age_list, index=index_list),
 '薪资': Series(data=salary_list, index=index_list),
 '性别': Series(data=gender_list, index=index_list),
 '婚姻状况': Series(data=marital_list, index=index_list)
}
df = DataFrame(dic)

# 写入csv,path_or_buf为写入文本文件
df.to_csv(path_or_buf='./People.csv', encoding='utf_8_sig')
print('end')

上面代码会在当前目录下生成一个 People.csv 文件

import pandas as pd
df = pd.read_csv('./People.csv')
df.head()

pandas数据分组groupby()和统计函数agg()的使用

# 根据 '性别列' 进行分组, 得到的是一个分组后的对象
groups = df.groupby('性别')
print(groups)
<pandas.core.groupby.generic.DataFrameGroupBy object at 0x000002953DAEBC88>

size()

使用groupby的size方法可以查看分组后每组的数量, 并返回一个含有分组大小的Series

print(groups.size())
性别
F 5
M 5
dtype: int64

可以只对一列数据进行分组, 只保留想要的数据

例如: 通过性别, 只对年龄进行分组

group = df['年龄'].groupby(df['性别'])
# 查看分组
print(group.groups)
# 根据分组后的名字选择分组
print(group.get_group('F'))
{'F': Int64Index([0, 2, 3, 6, 7], dtype='int64'), 'M': Int64Index([1, 4, 5, 8, 9], dtype='int64')}
0 25
2 27
3 25
6 25
7 32
Name: 年龄, dtype: int64
  • 代码df['年龄'].groupby(df['性别'])的逻辑是:取出df中'年龄'列数据,并且对该列数据根据df[‘性别']列数据进行分组操作
  • 这个代码也可写成df.groupby(df['性别'])['年龄'], 他的逻辑是: 将df数据通过df[‘性别']进行分组,然后再取出分组后的'年龄'列数据。两种写法达到的效果是一样的
  • group.groups的结果是一个字典,字典的key是分组后每个组的名字,对应的值是分组后的数据,此方法方便我们产看分组的情况
  • group.get_group('F')这个方法可以根据具体分组的名字获取,每个组的数据

 对分组进行遍历

import pandas as pd
df = pd.read_csv('./People.csv')
groups = df.groupby('性别')
# print(groups)
for group_name,group_df in groups:
 print('分组的名称:', group_name, '分组的数据', group_df.shape)
 print('-'*10)

分组的名称: F 分组的数据 (5, 6)
----------
分组的名称: M 分组的数据 (5, 6)
----------

- 将分组后的对象groups进行遍历,可以获取到group_name每个组的名字,group_df每个组的数据

import pandas as pd
df = pd.read_csv('./People.csv')
groups = df.groupby('性别')
for group_name,group_df in groups:
 f_mean = group_df['年龄'].mean()
 f_max = group_df['年龄'].max()
 f_min = group_df['年龄'].min()
 print('{}组的最大年龄是{},最小年龄是{},平均年龄是{}'.format(group_name,f_max,f_min,f_mean))

F组的最大年龄是32,最小年龄是25,平均年龄是26.8
M组的最大年龄是30,最小年龄是26,平均年龄是28.2

按多列进行分组

当需要按照多列进行分组的时候, groupby 方法里面我们传入一个列表, 列表分别存储分组依据的列名

注意: 列表中列名的顺序, 确定了先按XXXX列分组, 然后在按照YYYY列分组, 不同的顺序产生的分组名字是不同的

df = pd.read_csv('./People.csv')
group=df.groupby(['性别', '婚姻状况'])
df1 = group.size()
print(df1)
性别 婚姻状况
F  NO   2
  YES   3
M  NO   4
  YES   1
dtype: int64

group.size()返回的结果中发现索引值是多层的, 所以对于多索引值的获取, 只需要从外往里一层一层的取就可以啦, 就像我们睡觉之前,需要先脱外衣再脱掉内衣是一样的

size = df1['F'][ 'NO']
print(size)
2

pandas 常用统计函数

  • count() 统计列表中非空手机开的个数
  • nunique() 统计非重复的数据个数
  • sum() 统计列表中所有数值的和
  • mean() 计算列表中数据的平均值
  • median() 统计列表中数据中位数
  • max() 求列表中数据的最大值
  • min() 求列表中数据的最小值

对分组后的数据进行统计 agg()

import pandas as pd
df = pd.read_csv('./People.csv')
groups = df.groupby('性别')
for group_name,group_df in groups:
  f_se = group_df['年龄'].agg(['max','min','mean'])
  print('{}组的最大年龄是{},最小年龄是{},平均年龄是{}'.format(group_name,f_se[0],f_se[1],f_se[2]))

F组的最大年龄是32.0,最小年龄是25.0,平均年龄是26.8
M组的最大年龄是30.0,最小年龄是26.0,平均年龄是28.2

  • 在使用 agg() 函数时, 我们可以将多个统计函数一起放在一个 agg() 函数中
  • 如果是统计函数是pandas 提供的, 只需要将函数名字以字符串的形式存储到列表中即可
  • 例如: 将 max() 改成 ‘max'

自定义统计函数

当使用自定义的统计函数时
先创建统计函数

# 自定义的统计函数
def my_peak_range(df):
  """
  返回最大值与最小之间的范围
  """
  return df.max() - df.min()

# 使用
for group_name,group_df in groups:
  f_se = group_df['年龄'].agg(['max','min','mean',my_peak_range])
  print(f_se[0],f_se[1],f_se[3])
32.0 25.0 7.0
30.0 26.0 4.0

注意: 自定义函数名字传入agg() 函数时, 不需要转换成字符串

补充: 在这个数据中, 性别是什么的人总年龄最高

import pandas as pd
df = pd.read_csv('./People.csv')
groups = df.groupby('性别')
gende=groups.sum().sort_values(by='年龄',ascending=False).index.to_list()[0]
"""
这行代码, 先按性别进行分组, 然后吧每组中的数据求和得到总的年龄, 在按照年龄排序
再取出index,最后使用to_list()转换为列表,取出第一个数据
"""

print(gende)

M

开始按照性别分组, 组量太少, 数据也比较少, 本来准备算薪资总数, 但是单位忘记换了, 就这样吧

到此这篇关于pandas数据分组groupby()和统计函数agg()的使用的文章就介绍到这了,更多相关pandas groupby()和agg()内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
linux系统使用python获取内存使用信息脚本分享
Jan 15 Python
Python Numpy 数组的初始化和基本操作
Mar 13 Python
对Python3中的input函数详解
Apr 22 Python
python MNIST手写识别数据调用API的方法
Aug 08 Python
详解python pandas 分组统计的方法
Jul 30 Python
pyqt5 QScrollArea设置在自定义侧(任何位置)
Sep 25 Python
Python 开发工具PyCharm安装教程图文详解(新手必看)
Feb 28 Python
pytorch随机采样操作SubsetRandomSampler()
Jul 07 Python
基于python调用jenkins-cli实现快速发布
Aug 14 Python
分布式全文检索引擎ElasticSearch原理及使用实例
Nov 14 Python
运行python提示no module named sklearn的解决方法
Nov 29 Python
Selenium环境变量配置(火狐浏览器)及验证实现
Dec 07 Python
pyx文件 生成pyd 文件用于 cython调用的实现
Mar 04 #Python
Python .py生成.pyd文件并打包.exe 的注意事项说明
Mar 04 #Python
python 中 .py文件 转 .pyd文件的操作
Mar 04 #Python
Python实现图片指定位置加图片水印(附Pyinstaller打包exe)
Mar 04 #Python
python 指定源路径来解决import问题的操作
Mar 04 #Python
python源文件的字符编码知识点详解
Mar 04 #Python
python3判断IP地址的方法
Mar 04 #Python
You might like
人工智能开始玩《星际争霸2》 你的操作跟得上吗?
2017/08/11 星际争霸
php二维数组排序方法(array_multisort usort)
2013/12/25 PHP
php使用反射插入对象示例分享
2014/03/11 PHP
Windows2003下php5.4安装配置教程(IIS)
2016/06/30 PHP
使用Zttp简化Guzzle 调用
2017/07/02 PHP
JavaScript判断一个URL链接是否有效的实现方法
2011/10/08 Javascript
关于火狐(firefox)及ie下event获取的两种方法
2012/12/27 Javascript
JS的千分位算法实现思路
2013/07/31 Javascript
jquery选择器排除某个DOM元素的方法(实例演示)
2014/04/25 Javascript
jQuery实现iframe父窗体和子窗体的相互调用
2016/06/17 Javascript
jQuery实现指定区域外单击关闭指定层的方法【经典】
2016/06/22 Javascript
jquery 判断selection range 是否在容器中的简单实例
2016/08/02 Javascript
vue 1.x 交互实现仿百度下拉列表示例
2017/10/21 Javascript
详解vue中使用微信jssdk
2019/04/19 Javascript
详解小程序中h5页面onShow实现及跨页面通信方案
2019/05/30 Javascript
小程序外卖订单界面的示例代码
2019/12/30 Javascript
JavaScript如何判断input数据类型
2020/02/06 Javascript
Python+Django在windows下的开发环境配置图解
2009/11/11 Python
python中__call__内置函数用法实例
2015/06/04 Python
Python 稀疏矩阵-sparse 存储和转换
2017/05/27 Python
python 实现一个贴吧图片爬虫的示例
2017/10/12 Python
python3学生名片管理v2.0版
2018/11/29 Python
Python3内置模块之json编解码方法小结【推荐】
2020/12/09 Python
解决pycharm上的jupyter notebook端口被占用问题
2019/12/17 Python
win10从零安装配置pytorch全过程图文详解
2020/05/08 Python
python 基于opencv实现高斯平滑
2020/12/18 Python
英国拳击装备购物网站:RDX Sports
2018/01/23 全球购物
美国医生配方营养补充剂供应商:Healthy Directions
2019/07/10 全球购物
英国排名第一的宠物店:PetPlanet
2020/02/02 全球购物
Ajxa常见问题都有哪些
2014/03/26 面试题
房地产活动策划方案
2014/05/14 职场文书
求职信范文大全
2014/05/26 职场文书
学校安全防火方案
2014/06/07 职场文书
十佳标兵事迹材料
2014/08/18 职场文书
CSS3 制作的书本翻页特效
2021/04/13 HTML / CSS
CSS子盒子水平和垂直居中的五种方法
2022/07/23 HTML / CSS