使用sklearn对多分类的每个类别进行指标评价操作


Posted in Python onJune 11, 2020

今天晚上,笔者接到客户的一个需要,那就是:对多分类结果的每个类别进行指标评价,也就是需要输出每个类型的精确率(precision),召回率(recall)以及F1值(F1-score)。

对于这个需求,我们可以用sklearn来解决,方法并没有难,笔者在此仅做记录,供自己以后以及读者参考。

我们模拟的数据如下:

y_true = ['北京', '上海', '成都', '成都', '上海', '北京', '上海', '成都', '北京', '上海']
y_pred = ['北京', '上海', '成都', '上海', '成都', '成都', '上海', '成都', '北京', '上海']

其中y_true为真实数据,y_pred为多分类后的模拟数据。使用sklearn.metrics中的classification_report即可实现对多分类的每个类别进行指标评价。

示例的Python代码如下:

# -*- coding: utf-8 -*-
from sklearn.metrics import classification_report

y_true = ['北京', '上海', '成都', '成都', '上海', '北京', '上海', '成都', '北京', '上海']
y_pred = ['北京', '上海', '成都', '上海', '成都', '成都', '上海', '成都', '北京', '上海']

t = classification_report(y_true, y_pred, target_names=['北京', '上海', '成都'])

print(t)

输出结果如下:

precision  recall f1-score  support

     北京    0.75   0.75   0.75     4
     上海    1.00   0.67   0.80     3
     成都    0.50   0.67   0.57     3

  accuracy              0.70    10
  macro avg    0.75   0.69   0.71    10
weighted avg    0.75   0.70   0.71    10

需要注意的是,输出的结果数据类型为str,如果需要使用该输出结果,则可将该方法中的output_dict参数设置为True,此时输出的结果如下:

{‘北京': {‘precision': 0.75, ‘recall': 0.75, ‘f1-score': 0.75, ‘support': 4},
‘上海': {‘precision': 1.0, ‘recall': 0.6666666666666666, ‘f1-score': 0.8, ‘support': 3},
‘成都': {‘precision': 0.5, ‘recall': 0.6666666666666666, ‘f1-score': 0.5714285714285715, ‘support': 3},
‘accuracy': 0.7,
‘macro avg': {‘precision': 0.75, ‘recall': 0.6944444444444443, ‘f1-score': 0.7071428571428572, ‘support': 10},
‘weighted avg': {‘precision': 0.75, ‘recall': 0.7, ‘f1-score': 0.7114285714285715, ‘support': 10}}

使用confusion_matrix方法可以输出该多分类问题的混淆矩阵,代码如下:

from sklearn.metrics import confusion_matrix
y_true = ['北京', '上海', '成都', '成都', '上海', '北京', '上海', '成都', '北京', '上海']
y_pred = ['北京', '上海', '成都', '上海', '成都', '成都', '上海', '成都', '北京', '上海']
print(confusion_matrix(y_true, y_pred, labels = ['北京', '上海', '成都']))

输出结果如下:

[[2 0 1]
 [0 3 1]
 [0 1 2]]

为了将该混淆矩阵绘制成图片,可使用如下的Python代码:

# -*- coding: utf-8 -*-
# author: Jclian91
# place: Daxing Beijing
# time: 2019-11-14 21:52

from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import matplotlib as mpl

# 支持中文字体显示, 使用于Mac系统
zhfont=mpl.font_manager.FontProperties(fname="/Library/Fonts/Songti.ttc")

y_true = ['北京', '上海', '成都', '成都', '上海', '北京', '上海', '成都', '北京', '上海']
y_pred = ['北京', '上海', '成都', '上海', '成都', '成都', '上海', '成都', '北京', '上海']

classes = ['北京', '上海', '成都']
confusion = confusion_matrix(y_true, y_pred)

# 绘制热度图
plt.imshow(confusion, cmap=plt.cm.Greens)
indices = range(len(confusion))
plt.xticks(indices, classes, fontproperties=zhfont)
plt.yticks(indices, classes, fontproperties=zhfont)
plt.colorbar()
plt.xlabel('y_pred')
plt.ylabel('y_true')

# 显示数据
for first_index in range(len(confusion)):
  for second_index in range(len(confusion[first_index])):
    plt.text(first_index, second_index, confusion[first_index][second_index])

# 显示图片
plt.show()

生成的混淆矩阵图片如下:

使用sklearn对多分类的每个类别进行指标评价操作

补充知识:python Sklearn实现xgboost的二分类和多分类

二分类:

train2.txt的格式如下:

使用sklearn对多分类的每个类别进行指标评价操作

import numpy as np
import pandas as pd
import sklearn
from sklearn.cross_validation import train_test_split,cross_val_score
from xgboost.sklearn import XGBClassifier
from sklearn.metrics import precision_score,roc_auc_score

min_max_scaler = sklearn.preprocessing.MinMaxScaler(feature_range=(-1,1))
resultX = []
resultY = []
with open("./train_data/train2.txt",'r') as rf:
  train_lines = rf.readlines()
  for train_line in train_lines:
    train_line_temp = train_line.split(",")
    train_line_temp = map(float, train_line_temp)
    line_x = train_line_temp[1:-1]
    line_y = train_line_temp[-1]
    resultX.append(line_x)
    resultY.append(line_y)

X = np.array(resultX)
Y = np.array(resultY)
X = min_max_scaler.fit_transform(X)
X_train,X_test, Y_train, Y_test = train_test_split(X,Y,test_size=0.3)

xgbc = XGBClassifier()
xgbc.fit(X_train,Y_train)
pre_test = xgbc.predict(X_test)

auc_score = roc_auc_score(Y_test,pre_test)
pre_score = precision_score(Y_test,pre_test)

print("xgb_auc_score:",auc_score)
print("xgb_pre_score:",pre_score)

多分类:有19种分类其中正常0,异常1~18种。数据格式如下:

使用sklearn对多分类的每个类别进行指标评价操作

# -*- coding:utf-8 -*-
from sklearn import datasets
from sklearn.multiclass import OneVsRestClassifier
from sklearn.svm import LinearSVC
from sklearn.cross_validation import train_test_split,cross_val_score
from sklearn.svm import SVC
from sklearn.linear_model import LogisticRegression
from xgboost.sklearn import XGBClassifier
import sklearn
import numpy as np
from sklearn.preprocessing import OneHotEncoder
from sklearn.metrics import precision_score,roc_auc_score
min_max_scaler = sklearn.preprocessing.MinMaxScaler(feature_range=(-1,1))

resultX = []
resultY = []
with open("../train_data/train_multi_class.txt",'r') as rf:
  train_lines = rf.readlines()
  for train_line in train_lines:
    train_line_temp = train_line.split(",")
    train_line_temp = map(float, train_line_temp) # 转化为浮点数
    line_x = train_line_temp[1:-1]
    line_y = train_line_temp[-1]
    resultX.append(line_x)
    resultY.append(line_y)

X = np.array(resultX)
Y = np.array(resultY)

#fit_transform(partData)对部分数据先拟合fit,找到该part的整体指标,如均值、方差、最大值最小值等等(根据具体转换的目的),然后对该partData进行转换transform,从而实现数据的标准化、归一化等等。。
X = min_max_scaler.fit_transform(X)
#通过OneHotEncoder函数将Y值离散化成19维,例如3离散成000000···100

Y = OneHotEncoder(sparse = False).fit_transform(Y.reshape(-1,1))
X_train,X_test, Y_train, Y_test = train_test_split(X,Y,test_size=0.2)

model = OneVsRestClassifier(XGBClassifier(),n_jobs=2)
clf = model.fit(X_train, Y_train)

pre_Y = clf.predict(X_test)
test_auc2 = roc_auc_score(Y_test,pre_Y)#验证集上的auc值
print ("xgb_muliclass_auc:",test_auc2)

以上这篇使用sklearn对多分类的每个类别进行指标评价操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
TensorFLow用Saver保存和恢复变量
Mar 10 Python
python实现人人自动回复、抢沙发功能
Jun 08 Python
基于python实现聊天室程序
Jul 27 Python
pandas修改DataFrame列名的实现方法
Feb 22 Python
python实现的多任务版udp聊天器功能案例
Nov 13 Python
简单了解python装饰器原理及使用方法
Dec 18 Python
jupyter notebook参数化运行python方式
Apr 10 Python
python实现单机五子棋
Aug 28 Python
Python 常用日期处理 -- calendar 与 dateutil 模块的使用
Sep 02 Python
Python如何在bool函数中取值
Sep 21 Python
Python常用GUI框架原理解析汇总
Dec 07 Python
python软件测试Jmeter性能测试JDBC Request(结合数据库)的使用详解
Jan 26 Python
python属于解释语言吗
Jun 11 #Python
numpy的Fancy Indexing和array比较详解
Jun 11 #Python
python如何更新包
Jun 11 #Python
浅谈keras中自定义二分类任务评价指标metrics的方法以及代码
Jun 11 #Python
Keras中的多分类损失函数用法categorical_crossentropy
Jun 11 #Python
Python 列表中的修改、添加和删除元素的实现
Jun 11 #Python
python中什么是面向对象
Jun 11 #Python
You might like
php 在文件指定行插入数据的代码
2010/05/08 PHP
php保存任意网络图片到服务器的方法
2015/04/14 PHP
PHP面向对象程序设计OOP继承用法入门示例
2016/12/27 PHP
PHP设计模式(六)桥连模式Bridge实例详解【结构型】
2020/05/02 PHP
js脚本学习 比较实用的基础
2006/09/07 Javascript
身份证号码前六位所代表的省,市,区, 以及地区编码下载
2007/04/12 Javascript
js 图片等比例缩放代码
2010/05/13 Javascript
Chrome中JSON.parse的特殊实现
2011/01/12 Javascript
jQuery拖拽 & 弹出层 介绍与示例
2013/12/27 Javascript
javascript对JSON数据排序的3个例子
2014/04/12 Javascript
Node调试工具JSHint的安装及配置教程
2014/05/27 Javascript
javascript实现获取字符串hash值
2015/05/10 Javascript
详解Node项目部署到云服务器上
2017/07/12 Javascript
vue使用element-ui的el-input监听不了回车事件的解决方法
2018/01/12 Javascript
vue 中滚动条始终定位在底部的方法
2018/09/03 Javascript
Js参数RSA加密传输之jsencrypt.js的使用
2020/02/07 Javascript
Vue中component标签解决项目组件化操作
2020/09/04 Javascript
[03:12]完美世界DOTA2联赛PWL DAY6集锦
2020/11/05 DOTA
[01:28:44]DOTA2-DPC中国联赛定级赛 RNG vs iG BO3第一场 1月10日
2021/03/11 DOTA
python使用Image处理图片常用技巧分析
2015/06/01 Python
python中使用序列的方法
2015/08/03 Python
1分钟快速生成用于网页内容提取的xslt
2018/02/23 Python
Python实现的redis分布式锁功能示例
2018/05/29 Python
python pygame模块编写飞机大战
2018/11/20 Python
Python 进程之间共享数据(全局变量)的方法
2019/07/16 Python
Python3离线安装Requests模块问题
2019/10/13 Python
Python字典添加,删除,查询等相关操作方法详解
2020/02/07 Python
PYcharm 激活方法(推荐)
2020/03/23 Python
基于python实现操作redis及消息队列
2020/08/27 Python
信息管理专业学生自荐信格式
2013/09/22 职场文书
儿媳婚宴答谢词
2014/01/14 职场文书
信息服务专业毕业生求职信
2014/03/02 职场文书
教师作风建设剖析材料
2014/10/11 职场文书
学习十八大的感悟
2015/08/11 职场文书
手把手教你怎么用Python实现zip文件密码的破解
2021/05/27 Python
React配置子路由的实现
2021/06/03 Javascript