python实现图像全景拼接


Posted in Python onMarch 27, 2020

图像的全景拼接包括三大部分:特征点提取与匹配、图像配准、图像融合。

1、基于SIFT的特征点的提取与匹配

利用Sift提取图像的局部特征,在尺度空间寻找极值点,并提取出其位置、尺度、方向信息。

具体步骤:

1). 生成高斯差分金字塔(DOG金字塔),尺度空间构建

2). 空间极值点检测(关键点的初步查探)

3). 稳定关键点的精确定位

4). 稳定关键点方向信息分配

5). 关键点描述

6). 特征点匹配

2、图像配准

图像配准是一种确定待拼接图像间的重叠区域以及重叠位置的技术,它是整个图像拼接的核心。本节采用的是基于特征点的图像配准方法,即通过匹配点对构建图像序列之间的变换矩阵,从而完成全景图像的拼接。

变换矩阵H求解是图像配准的核心,其求解的算法流程如下。

1)检测每幅图像中特征点。

2)计算特征点之间的匹配。

3)计算图像间变换矩阵的初始值。

4)迭代精炼H变换矩阵。

5)引导匹配。用估计的H去定义对极线附近的搜索区域,进一步确定特征点的对应。

6)重复迭代4)和5)直到对应点的数目稳定为止。

设图像序列之间的变换为投影变换

可用4组最佳匹配计算出H矩阵的8 个自由度参数hi=( i=0,1,...,7),并以此作为初始值。

为了提高图像配准的精度,本节采用RANSAC算法对图像变换矩阵进行求解与精炼,达到了较好的图像拼接效果。RANSAC算法的思想简单而巧妙:首先随机地选择两个点,这两个点确定了一条直线,并且称在这条直线的一定范围内的点为这条直线的支撑。这样的随机选择重复数次,然后,具有最大支撑集的直线被确认为是样本点集的拟合。在拟合的误差距离范围内的点被认为是内点,它们构成一致集,反之则为外点。根据算法描述,可以很快判断,如果只有少量外点,那么随机选取的包含外点的初始点集确定的直线不会获得很大的支撑,值得注意的是,过大比例的外点将导致RANSAC算法失败。在直线拟合的例子中,由点集确定直线至少需要两个点;而对于透视变换,这样的最小集合需要有4个点。

3、图像融合

因为相机和光照强度的差异,会造成一幅图像内部,以及图像之间亮度的不均匀,拼接后的图像会出现明暗交替,这样给观察造成极大的不便。 亮度与颜色均衡处理,通常的处理方式是通过相机的光照模型,校正一幅图像内部的光照不均匀性,然后通过相邻两幅图像重叠区域之间的关系,建立相邻两幅图像之间直方图映射表,通过映射表对两幅图像做整体的映射变换,最终达到整体的亮度和颜色的一致性。

具体实现:

import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt

if __name__ == '__main__':
top, bot, left, right = 100, 100, 0, 500
img1 = cv.imread('1.jpg')
img2 = cv.imread('2.jpg')
srcImg = cv.copyMakeBorder(img1, top, bot, left, right, cv.BORDER_CONSTANT, value=(0, 0, 0))
testImg = cv.copyMakeBorder(img2, top, bot, left, right, cv.BORDER_CONSTANT, value=(0, 0, 0))
img1gray = cv.cvtColor(srcImg, cv.COLOR_BGR2GRAY)
img2gray = cv.cvtColor(testImg, cv.COLOR_BGR2GRAY)
sift = cv.xfeatures2d_SIFT().create()
# find the keypoints and descriptors with SIFT
kp1, des1 = sift.detectAndCompute(img1gray, None)
kp2, des2 = sift.detectAndCompute(img2gray, None)
# FLANN parameters
FLANN_INDEX_KDTREE = 1
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
search_params = dict(checks=50)
flann = cv.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des1, des2, k=2)

# Need to draw only good matches, so create a mask
matchesMask = [[0, 0] for i in range(len(matches))]

good = []
pts1 = []
pts2 = []
# ratio test as per Lowe's paper
for i, (m, n) in enumerate(matches):
if m.distance < 0.7*n.distance:
good.append(m)
pts2.append(kp2[m.trainIdx].pt)
pts1.append(kp1[m.queryIdx].pt)
matchesMask[i] = [1, 0]

draw_params = dict(matchColor=(0, 255, 0),
singlePointColor=(255, 0, 0),
matchesMask=matchesMask,
flags=0)
img3 = cv.drawMatchesKnn(img1gray, kp1, img2gray, kp2, matches, None, **draw_params)
plt.imshow(img3, ), plt.show()

rows, cols = srcImg.shape[:2]
MIN_MATCH_COUNT = 10
if len(good) > MIN_MATCH_COUNT:
src_pts = np.float32([kp1[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)
dst_pts = np.float32([kp2[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)
M, mask = cv.findHomography(src_pts, dst_pts, cv.RANSAC, 5.0)
warpImg = cv.warpPerspective(testImg, np.array(M), (testImg.shape[1], testImg.shape[0]), flags=cv.WARP_INVERSE_MAP)

for col in range(0, cols):
if srcImg[:, col].any() and warpImg[:, col].any():
left = col
break
for col in range(cols-1, 0, -1):
if srcImg[:, col].any() and warpImg[:, col].any():
right = col
break

res = np.zeros([rows, cols, 3], np.uint8)
for row in range(0, rows):
for col in range(0, cols):
if not srcImg[row, col].any():
res[row, col] = warpImg[row, col]
elif not warpImg[row, col].any():
res[row, col] = srcImg[row, col]
else:
srcImgLen = float(abs(col - left))
testImgLen = float(abs(col - right))
alpha = srcImgLen / (srcImgLen + testImgLen)
res[row, col] = np.clip(srcImg[row, col] * (1-alpha) + warpImg[row, col] * alpha, 0, 255)

# opencv is bgr, matplotlib is rgb
res = cv.cvtColor(res, cv.COLOR_BGR2RGB)
# show the result
plt.figure()
plt.imshow(res)
plt.show()
else:
print("Not enough matches are found - {}/{}".format(len(good), MIN_MATCH_COUNT))
matchesMask = None

实验结果:

1、室内场景:

python实现图像全景拼接

原图1

python实现图像全景拼接

原图2

拼接后:

python实现图像全景拼接

2、室外场景:

场景1:

python实现图像全景拼接

原图1

python实现图像全景拼接

原图2

拼接后:

python实现图像全景拼接

场景2:

python实现图像全景拼接

原图1

python实现图像全景拼接

原图2

拼接后:

python实现图像全景拼接

场景3:

python实现图像全景拼接

原图1

python实现图像全景拼接

原图2

拼接后:

python实现图像全景拼接

总结:

本文分别针对室内和室外两种情况对两张图像做全景拼接,发现室内情况下拼接的效果较为好。在室外场景1情况下,两张图像有近景和远景结合,两张图像拼接后近景的图像被放大并有一定程度的倾斜;在场景2中,两张图像都是远景,拼接后的效果还不错但是在拼接后图像的中上方出现了拼接缝;场景3是在不同明亮程度下图像的拼接可以发现拼接后的图像出现明显的明暗差距,并且拼接缝明显两张图像没有很好的拼接在一起,出现很多没有重合的地方。

本实验最初是用opencv-contrib3.4.5版本,但是由于sift的专利限制无法使用,随后用opencv-contriv3.4.2代码可以运行,不会出现问题。方法:先卸载当前版本的opencv并安装:

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple opencv-contrib-python==3.4.2.16

本文已被收录到专题《python图片处理操作》 ,欢迎大家点击学习更多精彩内容。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python基于回溯法子集树模板解决数字组合问题实例
Sep 02 Python
Python使用numpy实现BP神经网络
Mar 10 Python
利用Python如何将数据写到CSV文件中
Jun 05 Python
Python 找到列表中满足某些条件的元素方法
Jun 26 Python
对numpy数据写入文件的方法讲解
Jul 09 Python
python实现石头剪刀布程序
Jan 20 Python
Python调用接口合并Excel表代码实例
Mar 31 Python
django正续或者倒序查库实例
May 19 Python
Python接口测试文件上传实例解析
May 22 Python
Python3交互式shell ipython3安装及使用详解
Jul 11 Python
Python3实现英文字母转换哥特式字体实例代码
Sep 01 Python
python 发送邮件的四种方法汇总
Dec 02 Python
如何在Python 游戏中模拟引力
Mar 27 #Python
Python 实现平台类游戏添加跳跃功能
Mar 27 #Python
django配置app中的静态文件步骤
Mar 27 #Python
使用卷积神经网络(CNN)做人脸识别的示例代码
Mar 27 #Python
django实现HttpResponse返回json数据为中文
Mar 27 #Python
python对XML文件的操作实现代码
Mar 27 #Python
Python Socketserver实现FTP文件上传下载代码实例
Mar 27 #Python
You might like
全文搜索和替换
2006/10/09 PHP
php 转换字符串编码 iconv与mb_convert_encoding的区别说明
2011/11/10 PHP
php的数组与字符串的转换函数整理汇总
2013/07/18 PHP
php中将一个对象保存到Session中的方法
2015/03/13 PHP
简单谈谈php浮点数精确运算
2016/03/10 PHP
实例讲解如何在PHP的Yii框架中进行错误和异常处理
2016/03/17 PHP
判断javascript的数据类型(示例代码)
2013/12/11 Javascript
Javascript浮点数乘积运算出现多位小数的解决方法
2014/02/17 Javascript
jquery实现实时改变网页字体大小、字体背景色和颜色的方法
2015/08/05 Javascript
JS实现的简洁二级导航菜单雏形效果
2015/10/13 Javascript
JS组件Bootstrap实现弹出框效果代码
2016/04/26 Javascript
jQuery基于$.ajax设置移动端click超时处理方法
2016/05/14 Javascript
js两种拼接字符串的简单方法(必看)
2016/09/02 Javascript
jquery validate表单验证插件
2016/09/06 Javascript
浅谈JS的基础类型与引用类型
2016/09/13 Javascript
JavaScript实现类似拉勾网的鼠标移入移出效果
2016/10/27 Javascript
详解如何在Angular中快速定位DOM元素
2017/05/17 Javascript
Vue中保存用户登录状态实例代码
2017/06/07 Javascript
js自定义trim函数实现删除两端空格功能
2018/02/09 Javascript
微信小程序实现日期格式化和倒计时
2020/11/01 Javascript
[01:19:54]DOTA2上海特级锦标赛主赛事日 - 2 败者组第二轮#1Alliance VS EHOME
2016/03/03 DOTA
Python的Django框架中模板碎片缓存简介
2015/07/24 Python
基于Python中单例模式的几种实现方式及优化详解
2018/01/09 Python
对Python3 解析html的几种操作方式小结
2019/02/16 Python
django admin管理工具自定义时间区间筛选器DateRangeFilter介绍
2020/05/19 Python
Python代码需要缩进吗
2020/07/01 Python
大数据分析用java还是Python
2020/07/06 Python
在HTML5中如何使用CSS建立不可选的文字
2014/10/17 HTML / CSS
Java的类与C++的类有什么不同
2014/01/18 面试题
商务英语大学生职业生涯规划书范文
2014/01/01 职场文书
演讲稿开场白
2014/01/13 职场文书
2014年信访维稳工作总结
2014/12/08 职场文书
2015元旦联欢晚会结束语
2014/12/14 职场文书
办公经费申请报告
2015/05/15 职场文书
2015年后备干部工作总结
2015/05/15 职场文书
如何设置多台电脑共享打印机?多台电脑共享打印机的方法
2022/04/08 数码科技