numpy中的ndarray方法和属性详解


Posted in Python onMay 27, 2019

NumPy数组的维数称为秩(rank),一维数组的秩为1,二维数组的秩为2,以此类推。在NumPy中,每一个线性的数组称为是一个轴(axes),秩其实是描述轴的数量。比如说,二维数组相当于是一个一维数组,而这个一维数组中每个元素又是一个一维数组。所以这个一维数组就是NumPy中的轴(axes),而轴的数量——秩,就是数组的维数。

Numpy库中的矩阵模块为ndarray对象,有很多属性:T,data, dtype,flags,flat,imag,real,size,

itemsize,nbytes,ndim,shape,strides,ctypes,base等等。

>>> import numpy as np
>>> x=np.array([[1,2,3],[9,8,7],[6,5,4]])
>>> x.T  #获得x的转置矩阵
array([[1, 9, 6],
[2, 8, 5],
[3, 7, 4]])
>>> print x.flags #返回数组内部的信息
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
UPDATEIFCOPY : False
>>> x.flat[2:6]  #将数组变为1维数组,并获取其中的一部分数据
array([3, 9, 8, 7])
>>> x.flat = 4; x  #将值赋给1维数组,再转化成有原有数组的大小形式
array([[4, 4, 4],
[4, 4, 4],
[4, 4, 4]])
>>> x
array([[4, 4, 4],
[4, 4, 4],
[4, 4, 4]])

ndarray.imag # 为复变函数中含有虚部的数组,如下:

>>> x = np.sqrt([2+3j, 5+0j])  # 创建一个复数
>>> x
array([ 1.67414923+0.89597748j, 2.23606798+0.j    ])
>>> x.imag #获得复数的虚部
array([ 0.89597748, 0.    ])
>>> x.real  #获得复数的实部
array([ 1.67414923, 2.23606798])
>>> x=np.arange(10) #随机生成一个数组,并重新命名一个空间的数组
>>> x.reshape(2,5)
array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]])
>>> x.size  #获得数组中元素的个数
10
>>> x.ndim #获得数组的维数
>>> x.shape #获得数组的(行数,列数)
(10,)
>>> y=x.reshape(5,2)
>>> y
array([[0, 1],
[2, 3],
[4, 5],
[6, 7],
[8, 9]])
>>> y.base  #获得该数组基于另外一个对象数组而来,如下,y是根据x而来
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Ndarray对象的方法

ndarray.ptp(axis=None, out=None) : 返回数组的最大值—最小值或者某轴的最大值—最小值

ndarray.clip(a_min, a_max, out=None) : 小于最小值的元素赋值为最小值,大于最大值的元素变为最大值。

ndarray.all():如果所有元素都为真,那么返回真;否则返回假

ndarray.any():只要有一个元素为真则返回真

ndarray.swapaxes(axis1, axis2) : 交换两个轴的元素,如下

>>> z.swapaxes(0,1)
array([[2, 4, 6, 8],
[3, 5, 7, 9]])

下面为改变数组维度和大小的方法:

ndarray.reshape(shape[, order]) :返回重命名数组大小后的数组,不改变元素个数.

ndarray.resize(new_shape[, refcheck]) :改变数组的大小(可以改变数组中元素个数).

ndarray.transpose(*axes) :返回矩阵的转置矩阵

ndarray.swapaxes(axis1, axis2) : 交换两个轴的元素后的矩阵.

ndarray.flatten([order]) : 复制一个一维的array出来.

ndarray.ravel([order]) :返回为展平后的一维数组.

ndarray.squeeze([axis]) :移除长度为1的轴。

ndarray.tolist():将数组转化为列表

ndarray.take(indices, axis=None, out=None, mode='raise'):获得数组的指定索引的数据,如:

>>> a=np.arange(12).reshape(3,4)
>>> a
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
>>> a.take([1,3],axis=1) #提取1,3列的数据
array([[ 1, 3],
[ 5, 7],
[ 9, 11]])

numpy.put(a, ind, v, mode='raise'):用v的值替换数组a中的ind(索引)的值。Mode可以为raise/wrap/clip。Clip:如果给定的ind超过了数组的大小,那么替换最后一个元素。

numpy.repeat(a, repeats, axis=None):重复数组的元素,如:
>>> x = np.array([[1,2],[3,4]])
>>> np.repeat(x, 2)
array([1, 1, 2, 2, 3, 3, 4, 4])
>>> np.repeat(x, 3, axis=1)
array([[1, 1, 1, 2, 2, 2],
[3, 3, 3, 4, 4, 4]])
>>> np.repeat(x, [1, 2], axis=0)
array([[1, 2],
[3, 4],
[3, 4]])

numpy.tile(A, reps):根据给定的reps重复数组A,和repeat不同,repeat是重复元素,该方法是重复数组。

ndarray.var(axis=None, dtype=None, out=None, ddof=0):返回数组的方差,沿指定的轴。

ndarray.std(axis=None, dtype=None, out=None, ddof=0):沿给定的轴返回数则的标准差

ndarray.prod(axis=None, dtype=None, out=None):返回指定轴的所有元素乘机

ndarray.cumprod(axis=None, dtype=None, out=None):返回指定轴的累积,如下:

>>> a
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
>>> a.cumprod(axis=1) #得到竖轴的累积
array([[  0,  0,  0,  0],
[  4,  20, 120, 840],
[  8,  72, 720, 7920]])

ndarray.mean(axis=None, dtype=None, out=None):返回指定轴的数组元素均值

ndarray.cumsum(axis=None, dtype=None, out=None):返回指定轴的元素累计和。如:

>>> a
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
>>> a.cumsum(axis=1)
array([[ 0, 1, 3, 6],
[ 4, 9, 15, 22],
[ 8, 17, 27, 38]])

ndarray.sum(axis=None, dtype=None, out=None):返回指定轴所有元素的和

ndarray.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None):返回沿对角线的数组元素之和

ndarray.round(decimals=0, out=None):将数组中的元素按指定的精度进行四舍五入,如下:

>>> np.around([0.37, 1.64])
array([ 0., 2.])
>>> np.around([0.37, 1.64], decimals=1)
array([ 0.4, 1.6])
>>> np.around([.5, 1.5, 2.5, 3.5, 4.5]) # rounds to nearest even value
array([ 0., 2., 2., 4., 4.])
>>> np.around([1,2,3,11], decimals=1) # ndarray of ints is returned
array([ 1, 2, 3, 11])
>>> np.around([1,2,3,11], decimals=-1)
array([ 0, 0, 0, 10])

ndarray.conj():返回所有复数元素的共轭复数,如:

>>> b=np.array([[1+2j,3+0j],[3+4j,7+5j]])
>>> b
array([[ 1.+2.j, 3.+0.j],
[ 3.+4.j, 7.+5.j]])
>>> b.conj()
array([[ 1.-2.j, 3.-0.j],
[ 3.-4.j, 7.-5.j]])

ndarray.argmin(axis=None, out=None):返回指定轴最小元素的索引。

ndarray.min(axis=None, out=None):返回指定轴的最小值

ndarray.argmax(axis=None, out=None):返回指定轴的最大元素索引值

ndarray.diagonal(offset=0, axis1=0, axis2=1):返回对角线的所有元素。

ndarray.compress(condition, axis=None, out=None):返回指定轴上条件下的切片。

ndarray.nonzero():返回非零元素的索引

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
删除目录下相同文件的python代码(逐级优化)
May 25 Python
详解Python中映射类型(字典)操作符的概念和使用
Aug 19 Python
简介Python的collections模块中defaultdict类型的用法
Jul 07 Python
Python实现PS滤镜功能之波浪特效示例
Jan 26 Python
python读取视频流提取视频帧的两种方法
Oct 22 Python
Python实现的个人所得税计算器示例
Jun 01 Python
Python判断telnet通不通的实例
Jan 26 Python
详解Python做一个名片管理系统
Mar 14 Python
python3 property装饰器实现原理与用法示例
May 15 Python
如何用Python做一个微信机器人自动拉群
Jul 03 Python
谈谈Python:为什么类中的私有属性可以在外部赋值并访问
Mar 05 Python
Python超简单容易上手的画图工具库推荐
May 10 Python
numpy.linspace函数具体使用详解
May 27 #Python
Django利用cookie保存用户登录信息的简单实现方法
May 27 #Python
Django框架设置cookies与获取cookies操作详解
May 27 #Python
numpy下的flatten()函数用法详解
May 27 #Python
详解numpy的argmax的具体使用
May 27 #Python
numpy.random模块用法总结
May 27 #Python
Django框架自定义session处理操作示例
May 27 #Python
You might like
php图片缩放实现方法
2014/02/20 PHP
PHP获取某个月最大天数(最后一天)的方法
2015/07/29 PHP
php实现文章置顶功能的方法
2016/10/20 PHP
JavaScript加入收藏夹功能(兼容IE、firefox、chrome)
2014/05/05 Javascript
微信小程序 删除项目工程实现步骤
2016/11/10 Javascript
原生js和css实现图片轮播效果
2017/02/07 Javascript
完美实现js焦点轮播效果(一)
2017/03/07 Javascript
vue弹窗插件实战代码
2018/09/08 Javascript
vue data引入本地图片的两种方式小结
2019/11/13 Javascript
Node Express用法详解【安装、使用、路由、中间件、模板引擎等】
2020/05/13 Javascript
Python中在脚本中引用其他文件函数的实现方法
2016/06/23 Python
详解Python的Lambda函数与排序
2016/10/25 Python
用十张图详解TensorFlow数据读取机制(附代码)
2018/02/06 Python
Python 读取图片文件为矩阵和保存矩阵为图片的方法
2018/04/27 Python
Python判断中文字符串是否相等的实例
2018/07/06 Python
Python3标准库总结
2019/02/19 Python
python文件写入write()的操作
2019/05/14 Python
Python 使用 attrs 和 cattrs 实现面向对象编程的实践
2019/06/12 Python
python3.8与pyinstaller冲突问题的快速解决方法
2020/01/16 Python
python如何实现单链表的反转
2020/02/10 Python
Python3.7.0 Shell添加清屏快捷键的实现示例
2020/03/23 Python
新版Pycharm中Matplotlib不会弹出独立的显示窗口的问题
2020/06/02 Python
一文详述 Python 中的 property 语法
2020/09/01 Python
使用 CSS3 中@media 实现网页自适应的示例代码
2020/03/24 HTML / CSS
THE OUTNET英国官网:国际设计师品牌折扣网站
2016/08/14 全球购物
澳洲在线厨具商店:Kitchen Style
2018/05/05 全球购物
Petmate品牌官方网站:宠物用品
2018/11/25 全球购物
size?爱尔兰官方网站:英国伦敦的球鞋精品店
2019/03/31 全球购物
工程概预算专业毕业生求职信
2013/10/04 职场文书
优秀士兵先进事迹
2014/02/06 职场文书
办公室副主任职责范本
2014/03/08 职场文书
教师国庆节演讲稿范文2014
2014/09/21 职场文书
2014年质检员工作总结
2014/11/18 职场文书
工伤私了协议书范本
2014/11/24 职场文书
2016年秋季运动会通讯稿
2015/11/25 职场文书
MySQL8.0 Undo Tablespace管理详解
2022/06/16 MySQL