numpy中的ndarray方法和属性详解


Posted in Python onMay 27, 2019

NumPy数组的维数称为秩(rank),一维数组的秩为1,二维数组的秩为2,以此类推。在NumPy中,每一个线性的数组称为是一个轴(axes),秩其实是描述轴的数量。比如说,二维数组相当于是一个一维数组,而这个一维数组中每个元素又是一个一维数组。所以这个一维数组就是NumPy中的轴(axes),而轴的数量——秩,就是数组的维数。

Numpy库中的矩阵模块为ndarray对象,有很多属性:T,data, dtype,flags,flat,imag,real,size,

itemsize,nbytes,ndim,shape,strides,ctypes,base等等。

>>> import numpy as np
>>> x=np.array([[1,2,3],[9,8,7],[6,5,4]])
>>> x.T  #获得x的转置矩阵
array([[1, 9, 6],
[2, 8, 5],
[3, 7, 4]])
>>> print x.flags #返回数组内部的信息
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
UPDATEIFCOPY : False
>>> x.flat[2:6]  #将数组变为1维数组,并获取其中的一部分数据
array([3, 9, 8, 7])
>>> x.flat = 4; x  #将值赋给1维数组,再转化成有原有数组的大小形式
array([[4, 4, 4],
[4, 4, 4],
[4, 4, 4]])
>>> x
array([[4, 4, 4],
[4, 4, 4],
[4, 4, 4]])

ndarray.imag # 为复变函数中含有虚部的数组,如下:

>>> x = np.sqrt([2+3j, 5+0j])  # 创建一个复数
>>> x
array([ 1.67414923+0.89597748j, 2.23606798+0.j    ])
>>> x.imag #获得复数的虚部
array([ 0.89597748, 0.    ])
>>> x.real  #获得复数的实部
array([ 1.67414923, 2.23606798])
>>> x=np.arange(10) #随机生成一个数组,并重新命名一个空间的数组
>>> x.reshape(2,5)
array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]])
>>> x.size  #获得数组中元素的个数
10
>>> x.ndim #获得数组的维数
>>> x.shape #获得数组的(行数,列数)
(10,)
>>> y=x.reshape(5,2)
>>> y
array([[0, 1],
[2, 3],
[4, 5],
[6, 7],
[8, 9]])
>>> y.base  #获得该数组基于另外一个对象数组而来,如下,y是根据x而来
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Ndarray对象的方法

ndarray.ptp(axis=None, out=None) : 返回数组的最大值—最小值或者某轴的最大值—最小值

ndarray.clip(a_min, a_max, out=None) : 小于最小值的元素赋值为最小值,大于最大值的元素变为最大值。

ndarray.all():如果所有元素都为真,那么返回真;否则返回假

ndarray.any():只要有一个元素为真则返回真

ndarray.swapaxes(axis1, axis2) : 交换两个轴的元素,如下

>>> z.swapaxes(0,1)
array([[2, 4, 6, 8],
[3, 5, 7, 9]])

下面为改变数组维度和大小的方法:

ndarray.reshape(shape[, order]) :返回重命名数组大小后的数组,不改变元素个数.

ndarray.resize(new_shape[, refcheck]) :改变数组的大小(可以改变数组中元素个数).

ndarray.transpose(*axes) :返回矩阵的转置矩阵

ndarray.swapaxes(axis1, axis2) : 交换两个轴的元素后的矩阵.

ndarray.flatten([order]) : 复制一个一维的array出来.

ndarray.ravel([order]) :返回为展平后的一维数组.

ndarray.squeeze([axis]) :移除长度为1的轴。

ndarray.tolist():将数组转化为列表

ndarray.take(indices, axis=None, out=None, mode='raise'):获得数组的指定索引的数据,如:

>>> a=np.arange(12).reshape(3,4)
>>> a
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
>>> a.take([1,3],axis=1) #提取1,3列的数据
array([[ 1, 3],
[ 5, 7],
[ 9, 11]])

numpy.put(a, ind, v, mode='raise'):用v的值替换数组a中的ind(索引)的值。Mode可以为raise/wrap/clip。Clip:如果给定的ind超过了数组的大小,那么替换最后一个元素。

numpy.repeat(a, repeats, axis=None):重复数组的元素,如:
>>> x = np.array([[1,2],[3,4]])
>>> np.repeat(x, 2)
array([1, 1, 2, 2, 3, 3, 4, 4])
>>> np.repeat(x, 3, axis=1)
array([[1, 1, 1, 2, 2, 2],
[3, 3, 3, 4, 4, 4]])
>>> np.repeat(x, [1, 2], axis=0)
array([[1, 2],
[3, 4],
[3, 4]])

numpy.tile(A, reps):根据给定的reps重复数组A,和repeat不同,repeat是重复元素,该方法是重复数组。

ndarray.var(axis=None, dtype=None, out=None, ddof=0):返回数组的方差,沿指定的轴。

ndarray.std(axis=None, dtype=None, out=None, ddof=0):沿给定的轴返回数则的标准差

ndarray.prod(axis=None, dtype=None, out=None):返回指定轴的所有元素乘机

ndarray.cumprod(axis=None, dtype=None, out=None):返回指定轴的累积,如下:

>>> a
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
>>> a.cumprod(axis=1) #得到竖轴的累积
array([[  0,  0,  0,  0],
[  4,  20, 120, 840],
[  8,  72, 720, 7920]])

ndarray.mean(axis=None, dtype=None, out=None):返回指定轴的数组元素均值

ndarray.cumsum(axis=None, dtype=None, out=None):返回指定轴的元素累计和。如:

>>> a
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
>>> a.cumsum(axis=1)
array([[ 0, 1, 3, 6],
[ 4, 9, 15, 22],
[ 8, 17, 27, 38]])

ndarray.sum(axis=None, dtype=None, out=None):返回指定轴所有元素的和

ndarray.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None):返回沿对角线的数组元素之和

ndarray.round(decimals=0, out=None):将数组中的元素按指定的精度进行四舍五入,如下:

>>> np.around([0.37, 1.64])
array([ 0., 2.])
>>> np.around([0.37, 1.64], decimals=1)
array([ 0.4, 1.6])
>>> np.around([.5, 1.5, 2.5, 3.5, 4.5]) # rounds to nearest even value
array([ 0., 2., 2., 4., 4.])
>>> np.around([1,2,3,11], decimals=1) # ndarray of ints is returned
array([ 1, 2, 3, 11])
>>> np.around([1,2,3,11], decimals=-1)
array([ 0, 0, 0, 10])

ndarray.conj():返回所有复数元素的共轭复数,如:

>>> b=np.array([[1+2j,3+0j],[3+4j,7+5j]])
>>> b
array([[ 1.+2.j, 3.+0.j],
[ 3.+4.j, 7.+5.j]])
>>> b.conj()
array([[ 1.-2.j, 3.-0.j],
[ 3.-4.j, 7.-5.j]])

ndarray.argmin(axis=None, out=None):返回指定轴最小元素的索引。

ndarray.min(axis=None, out=None):返回指定轴的最小值

ndarray.argmax(axis=None, out=None):返回指定轴的最大元素索引值

ndarray.diagonal(offset=0, axis1=0, axis2=1):返回对角线的所有元素。

ndarray.compress(condition, axis=None, out=None):返回指定轴上条件下的切片。

ndarray.nonzero():返回非零元素的索引

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python下的subprocess模块的入门指引
Apr 16 Python
python实现逆波兰计算表达式实例详解
May 06 Python
python实现图片变亮或者变暗的方法
Jun 01 Python
python+matplotlib演示电偶极子实例代码
Jan 12 Python
python如何将图片转换为字符图片
Aug 19 Python
python实现textrank关键词提取
Jun 22 Python
python创建属于自己的单词词库 便于背单词
Jul 30 Python
Python爬虫实例——爬取美团美食数据
Jul 15 Python
python3.7调试的实例方法
Jul 21 Python
Django Model层F,Q对象和聚合函数原理解析
Nov 12 Python
Python爬虫实例之2021猫眼票房字体加密反爬策略(粗略版)
Feb 22 Python
详解MindSpore自定义模型损失函数
Jun 30 Python
numpy.linspace函数具体使用详解
May 27 #Python
Django利用cookie保存用户登录信息的简单实现方法
May 27 #Python
Django框架设置cookies与获取cookies操作详解
May 27 #Python
numpy下的flatten()函数用法详解
May 27 #Python
详解numpy的argmax的具体使用
May 27 #Python
numpy.random模块用法总结
May 27 #Python
Django框架自定义session处理操作示例
May 27 #Python
You might like
B2K与车机的中波PK
2021/03/02 无线电
PHP 实现的将图片转换为TXT
2015/10/21 PHP
jQuery 源码分析笔记(3) Deferred机制
2011/06/19 Javascript
解析javascript 实用函数的使用详解
2013/05/10 Javascript
Ext中下拉列表ComboBox组件store数据格式用法介绍
2013/07/15 Javascript
javascript实用小函数使用介绍
2013/11/11 Javascript
JavaScript获取路径设计源码
2014/05/22 Javascript
jQuery ajax提交Form表单实例(附demo源码)
2016/04/06 Javascript
jQuery 弹出层插件(推荐)
2016/05/24 Javascript
JavaScript程序中实现继承特性的方式总结
2016/06/24 Javascript
jQuery实现为LI列表前3行设置样式的方法【2种方法】
2016/09/04 Javascript
JS封装的选项卡TAB切换效果示例
2016/09/20 Javascript
jQuery事件用法详解
2016/10/06 Javascript
yarn与npm的命令行小结
2016/10/20 Javascript
jQuery实现倒计时(倒计时年月日可自己输入)
2016/12/02 Javascript
使用Promise链式调用解决多个异步回调的问题
2017/01/15 Javascript
浅谈JS验证表单文本域输入空格的问题
2017/02/14 Javascript
详解node.js搭建代理服务器请求数据
2017/04/08 Javascript
vue中引入mxGraph的步骤详解
2019/05/17 Javascript
Laravel admin实现消息提醒、播放音频功能
2019/07/10 Javascript
TypeScript的安装、使用、自动编译的实现
2020/04/10 Javascript
谈一谈vue请求数据放在created好还是mounted里好
2020/07/27 Javascript
python list语法学习(带例子)
2013/11/01 Python
python将数组n等分的实例
2019/12/02 Python
Python eval函数原理及用法解析
2020/11/14 Python
css3.0 图形构成实例练习一
2013/03/19 HTML / CSS
Marlies Dekkers内衣法国官方网上商店:国际知名的荷兰内衣品牌
2019/03/18 全球购物
西班牙香水和化妆品连锁店:Druni
2019/05/05 全球购物
惠普新加坡官方商店:HP Singapore
2020/04/17 全球购物
如何实现jdbc性能优化
2012/07/30 面试题
Android面试题附答案
2014/12/08 面试题
社会学专业学生职业规划书
2014/02/07 职场文书
2014年父亲节活动方案
2014/03/06 职场文书
实习单位鉴定评语
2014/04/26 职场文书
淘宝文案策划岗位职责
2015/04/14 职场文书
婚宴父母致辞
2015/07/27 职场文书