前言
2048游戏规则:简单的移动方向键让数字叠加,并且获得这些数字每次叠加后的得分,当出现2048这个数字时游戏胜利。同时每次移动方向键时,都会在这个4*4的方格矩阵的空白区域随机产生一个数字2或者4,如果方格被数字填满了,那么就GameOver了。
主逻辑图
逻辑图解:黑色是逻辑层,蓝色是外部方法,红色是类内方法,稍后即可知道~
下面容我逐行解释主逻辑main()
函数,并且在其中穿叉外部定义的函数与类。
主逻辑代码解读(完整代码见文末)
主逻辑main如下,之后的是对主函数中的一些方法的解读:
def main(stdscr): def init(): #重置游戏棋盘 game_field.reset() return 'Game' def not_game(state): #画出 GameOver 或者 Win 的界面 game_field.draw(stdscr) #读取用户输入得到action,判断是重启游戏还是结束游戏 action = get_user_action(stdscr) responses = defaultdict(lambda: state) #默认是当前状态,没有行为就会一直在当前界面循环 responses['Restart'], responses['Exit'] = 'Init', 'Exit' #对应不同的行为转换到不同的状态 return responses[action] def game(): #画出当前棋盘状态 game_field.draw(stdscr) #读取用户输入得到action action = get_user_action(stdscr) if action == 'Restart': return 'Init' if action == 'Exit': return 'Exit' if game_field.move(action): # move successful if game_field.is_win(): return 'Win' if game_field.is_gameover(): return 'Gameover' return 'Game' state_actions = { 'Init': init, 'Win': lambda: not_game('Win'), 'Gameover': lambda: not_game('Gameover'), 'Game': game } curses.use_default_colors() game_field = GameField(win=32) state = 'Init' #状态机开始循环 while state != 'Exit': state = state_actions[state]()
逐条解读(代码框内会标注是来自外部,无标注则是来自内部):定义主函数
def main(stdscr):
def init(): #重置游戏棋盘 game_field.reset()
reset出自外部定义的类,game_field=GameField
的一个方法reset:
外部:
def reset(self): if self.score > self.highscore: self.highscore = self.score self.score = 0 self.field = [[0 for i in range(self.width)] for j in range(self.height)] self.spawn() self.spawn() #其中highscore为程序初始化过程中定义的一个变量。记录你win游戏的最高分数记录。
return 'Game'
返回一个游戏进行中的状态。game_field=GameField
状态在后面有定义:
主函数底部定义:
state_actions = { 'Init': init, 'Win': lambda: not_game('Win'), 'Gameover': lambda: not_game('Gameover'), 'Game': game }
def not_game(state): #画出 GameOver 或者 Win 的界面 game_field.draw(stdscr)
draw是导入的类game_field=GameField
中的方法:
#来自外部类 def draw(self, screen): help_string1 = '(W)Up (S)Down (A)Left (D)Right' help_string2 = ' (R)Restart (Q)Exit' gameover_string = ' GAME OVER' win_string = ' YOU WIN!' #定义各个字符串 def cast(string): screen.addstr(string + '\n') def draw_hor_separator(): line = '+' + ('+------' * self.width + '+')[1:] separator = defaultdict(lambda: line) if not hasattr(draw_hor_separator, "counter"): draw_hor_separator.counter = 0 cast(separator[draw_hor_separator.counter]) draw_hor_separator.counter += 1 def draw_row(row): cast(''.join('|{: ^5} '.format(num) if num > 0 else '| ' for num in row) + '|') screen.clear() cast('SCORE: ' + str(self.score)) if 0 != self.highscore: cast('HGHSCORE: ' + str(self.highscore)) for row in self.field: draw_hor_separator() draw_row(row) draw_hor_separator() if self.is_win(): cast(win_string) else: if self.is_gameover(): cast(gameover_string) else: cast(help_string1) cast(help_string2) #这里面的draw方法的字函数我就不做多的解释了,很简单的一些概念。 #但是又运用到了很优秀的精简代码。 #有的地方建议去查一下python的一些高级概念,我就不做多的介绍了。
这里面的draw方法的字函数我就不做多的解释了,很简单的一些概念。
但是又运用到了很优秀的精简代码。
有的地方建议去查一下python的一些高级概念,我就不做多的介绍了。
#读取用户输入得到action,判断是重启游戏还是结束游戏 action = get_user_action(stdscr)
读取用户行为,函数来自于代码初始的定义
#来自外部定义的函数 def get_user_action(keyboard): char = "N" while char not in actions_dict: char = keyboard.getch() return actions_dict[char]
在结尾处,也即是主函数执行的第三步,定义了state = state_actions[state]()
这一实例:
#主函数底部: state = 'Init' #状态机开始循环 while state != 'Exit': state = state_actions[state]()
responses = defaultdict(lambda: state) #默认是当前状态,没有行为就会一直在当前界面循环 responses['Restart'], responses['Exit'] = 'Init', 'Exit' #对应不同的行为转换到不同的状态 return responses[action]
def game(): #画出当前棋盘状态 game_field.draw(stdscr) #读取用户输入得到action action = get_user_action(stdscr) if action == 'Restart': return 'Init' if action == 'Exit': return 'Exit' if game_field.move(action): # move successful if game_field.is_win(): return 'Win' if game_field.is_gameover(): return 'Gameover' return 'Game' #game()函数的定义类似于上面已经讲过的not_game(),只是game()有了内部循环 #即如果不是Restart/Exit或者对move之后的状态进行判断,如果不是结束游戏,就一直在game()内部循环。
game()
函数的定义类似于上面已经讲过的not_game()
,只是game()
有了内部循环,即如果不是Restart/Exit或者对move之后的状态进行判断,如果不是结束游戏,就一直在game()
内部循环。
state_actions = { 'Init': init, 'Win': lambda: not_game('Win'), 'Gameover': lambda: not_game('Gameover'), 'Game': game } curses.use_default_colors() game_field = GameField(win=32) state = 'Init' #状态机开始循环 while state != 'Exit': state = state_actions[state]() #此处的意思是:state=state_actions[state] 可以看做是: #state=init()或者state=not_game(‘Win')或者是另外的not_game(‘Gameover')/game()
此处的意思是:state=state_actions[state]
可以看做是:state=init()
或者state=not_game(‘Win')
或者是另外的not_game(‘Gameover')/game()
废话不多说,上一个我的成功的图,另外,可以通过设置最后几行中的win=32来决定你最终获胜的条件!
完整代码
#-*- coding:utf-8 -*- import curses from random import randrange, choice # generate and place new tile from collections import defaultdict letter_codes = [ord(ch) for ch in 'WASDRQwasdrq'] actions = ['Up', 'Left', 'Down', 'Right', 'Restart', 'Exit'] actions_dict = dict(zip(letter_codes, actions * 2)) def transpose(field): return [list(row) for row in zip(*field)] def invert(field): return [row[::-1] for row in field] class GameField(object): def __init__(self, height=4, width=4, win=2048): self.height = height self.width = width self.win_value = win self.score = 0 self.highscore = 0 self.reset() def reset(self): if self.score > self.highscore: self.highscore = self.score self.score = 0 self.field = [[0 for i in range(self.width)] for j in range(self.height)] self.spawn() self.spawn() def move(self, direction): def move_row_left(row): def tighten(row): # squeese non-zero elements together new_row = [i for i in row if i != 0] new_row += [0 for i in range(len(row) - len(new_row))] return new_row def merge(row): pair = False new_row = [] for i in range(len(row)): if pair: new_row.append(2 * row[i]) self.score += 2 * row[i] pair = False else: if i + 1 < len(row) and row[i] == row[i + 1]: pair = True new_row.append(0) else: new_row.append(row[i]) assert len(new_row) == len(row) return new_row return tighten(merge(tighten(row))) moves = {} moves['Left'] = lambda field: \ [move_row_left(row) for row in field] moves['Right'] = lambda field: \ invert(moves['Left'](invert(field))) moves['Up'] = lambda field: \ transpose(moves['Left'](transpose(field))) moves['Down'] = lambda field: \ transpose(moves['Right'](transpose(field))) if direction in moves: if self.move_is_possible(direction): self.field = moves[direction](self.field) self.spawn() return True else: return False def is_win(self): return any(any(i >= self.win_value for i in row) for row in self.field) def is_gameover(self): return not any(self.move_is_possible(move) for move in actions) def draw(self, screen): help_string1 = '(W)Up (S)Down (A)Left (D)Right' help_string2 = ' (R)Restart (Q)Exit' gameover_string = ' GAME OVER' win_string = ' YOU WIN!' def cast(string): screen.addstr(string + '\n') def draw_hor_separator(): line = '+' + ('+------' * self.width + '+')[1:] separator = defaultdict(lambda: line) if not hasattr(draw_hor_separator, "counter"): draw_hor_separator.counter = 0 cast(separator[draw_hor_separator.counter]) draw_hor_separator.counter += 1 def draw_row(row): cast(''.join('|{: ^5} '.format(num) if num > 0 else '| ' for num in row) + '|') screen.clear() cast('SCORE: ' + str(self.score)) if 0 != self.highscore: cast('HGHSCORE: ' + str(self.highscore)) for row in self.field: draw_hor_separator() draw_row(row) draw_hor_separator() if self.is_win(): cast(win_string) else: if self.is_gameover(): cast(gameover_string) else: cast(help_string1) cast(help_string2) def spawn(self): new_element = 4 if randrange(100) > 89 else 2 (i,j) = choice([(i,j) for i in range(self.width) for j in range(self.height) if self.field[i][j] == 0]) self.field[i][j] = new_element def move_is_possible(self, direction): def row_is_left_movable(row): def change(i): # true if there'll be change in i-th tile if row[i] == 0 and row[i + 1] != 0: # Move return True if row[i] != 0 and row[i + 1] == row[i]: # Merge return True return False return any(change(i) for i in range(len(row) - 1)) check = {} check['Left'] = lambda field: \ any(row_is_left_movable(row) for row in field) check['Right'] = lambda field: \ check['Left'](invert(field)) check['Up'] = lambda field: \ check['Left'](transpose(field)) check['Down'] = lambda field: \ check['Right'](transpose(field)) if direction in check: return check[direction](self.field) else: return False def main(stdscr): def init(): #重置游戏棋盘 game_field.reset() return 'Game' def not_game(state): #画出 GameOver 或者 Win 的界面 game_field.draw(stdscr) #读取用户输入得到action,判断是重启游戏还是结束游戏 action = get_user_action(stdscr) responses = defaultdict(lambda: state) #默认是当前状态,没有行为就会一直在当前界面循环 responses['Restart'], responses['Exit'] = 'Init', 'Exit' #对应不同的行为转换到不同的状态 return responses[action] def game(): #画出当前棋盘状态 game_field.draw(stdscr) #读取用户输入得到action action = get_user_action(stdscr) if action == 'Restart': return 'Init' if action == 'Exit': return 'Exit' if game_field.move(action): # move successful if game_field.is_win(): return 'Win' if game_field.is_gameover(): return 'Gameover' return 'Game' state_actions = { 'Init': init, 'Win': lambda: not_game('Win'), 'Gameover': lambda: not_game('Gameover'), 'Game': game } curses.use_default_colors() game_field = GameField(win=32) state = 'Init' #状态机开始循环 while state != 'Exit': state = state_actions[state]() curses.wrapper(main)
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流。
一步步教你用Python实现2048小游戏
- Author -
HustWolf声明:登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。
Reply on: @reply_date@
@reply_contents@