利用Python绘制数据的瀑布图的教程


Posted in Python onApril 07, 2015

介绍

对于绘制某些类型的数据来说,瀑布图是一种十分有用的工具。不足为奇的是,我们可以使用Pandas和matplotlib创建一个可重复的瀑布图。

在往下进行之前,我想先告诉大家我指代的是哪种类型的图表。我将建立一个维基百科文章中描述的2D瀑布图。

这种图表的一个典型的用处是显示开始值和结束值之间起“桥梁”作用的+和-的值。因为这个原因,财务人员有时会将其称为一个桥梁。跟我之前所采用的其他例子相似,这种类型的绘图在Excel中不容易生成,当然肯定有生成它的方法,但是不容易记住。

关于瀑布图需要记住的关键点是:它本质上是一个堆叠在一起的条形图,不过特殊的一点是,它有一个空白底栏,所以顶部栏会“悬浮”在空中。那么,让我们开始吧。
创建图表

首先,执行标准的输入,并确保IPython能显示matplot图。
 

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
 
%matplotlib inline

设置我们想画出瀑布图的数据,并将其加载到数据帧(DataFrame)中。

数据需要以你的起始值开始,但是你需要给出最终的总数。我们将在下面计算它。
 

index = ['sales','returns','credit fees','rebates','late charges','shipping']
data = {'amount': [350000,-30000,-7500,-25000,95000,-7000]}
trans = pd.DataFrame(data=data,index=index)

我使用了IPython中便捷的display函数来更简单地控制我要显示的内容。
 

from IPython.display import display
display(trans)

利用Python绘制数据的瀑布图的教程

瀑布图的最大技巧是计算出底部堆叠条形图的内容。有关这一点,我从stackoverflow上的讨论中学到很多。

首先,我们得到累积和。
 

display(trans.amount.cumsum())
sales      350000
returns     320000
credit fees   312500
rebates     287500
late charges  382500
shipping    375500
Name: amount, dtype: int64

这看起来不错,但我们需要将一个地方的数据转移到右边。
 

blank=trans.amount.cumsum().shift(1).fillna(0)
display(blank)
 
sales        0
returns     350000
credit fees   320000
rebates     312500
late charges  287500
shipping    382500
Name: amount, dtype: float64

我们需要向trans和blank数据帧中添加一个净总量。
 

total = trans.sum().amount
trans.loc["net"] = total
blank.loc["net"] = total
display(trans)
display(blank)

利用Python绘制数据的瀑布图的教程

sales        0
returns     350000
credit fees   320000
rebates     312500
late charges  287500
shipping    382500
net       375500
Name: amount, dtype: float64

创建我们用来显示变化的步骤。

step = blank.reset_index(drop=True).repeat(3).shift(-1)
step[1::3] = np.nan
display(step)
 
0     0
0    NaN
0  350000
1  350000
1    NaN
1  320000
2  320000
2    NaN
2  312500
3  312500
3    NaN
3  287500
4  287500
4    NaN
4  382500
5  382500
5    NaN
5  375500
6  375500
6    NaN
6    NaN
Name: amount, dtype: float64

对于“net”行,为了不使堆叠加倍,我们需要确保blank值为0。
 

blank.loc["net"] = 0

然后,将其画图,看一下什么样子。
 

my_plot = trans.plot(kind='bar', stacked=True, bottom=blank,legend=None, title="2014 Sales Waterfall")
my_plot.plot(step.index, step.values,'k')

利用Python绘制数据的瀑布图的教程

看起来相当不错,但是让我们试着格式化Y轴,以使其更具有可读性。为此,我们使用FuncFormatter和一些Python2.7+的语法来截断小数并向格式中添加一个逗号。
 

def money(x, pos):
  'The two args are the value and tick position'
  return "${:,.0f}".format(x)
 
from matplotlib.ticker import FuncFormatter
formatter = FuncFormatter(money)

然后,将其组合在一起。
 

my_plot = trans.plot(kind='bar', stacked=True, bottom=blank,legend=None, title="2014 Sales Waterfall")
my_plot.plot(step.index, step.values,'k')
my_plot.set_xlabel("Transaction Types")
my_plot.yaxis.set_major_formatter(formatter)

利用Python绘制数据的瀑布图的教程

完整脚本

基本图形能够正常工作,但是我想添加一些标签,并做一些小的格式修改。下面是我最终的脚本:
 

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.ticker import FuncFormatter
 
#Use python 2.7+ syntax to format currency
def money(x, pos):
  'The two args are the value and tick position'
  return "${:,.0f}".format(x)
formatter = FuncFormatter(money)
 
#Data to plot. Do not include a total, it will be calculated
index = ['sales','returns','credit fees','rebates','late charges','shipping']
data = {'amount': [350000,-30000,-7500,-25000,95000,-7000]}
 
#Store data and create a blank series to use for the waterfall
trans = pd.DataFrame(data=data,index=index)
blank = trans.amount.cumsum().shift(1).fillna(0)
 
#Get the net total number for the final element in the waterfall
total = trans.sum().amount
trans.loc["net"]= total
blank.loc["net"] = total
 
#The steps graphically show the levels as well as used for label placement
step = blank.reset_index(drop=True).repeat(3).shift(-1)
step[1::3] = np.nan
 
#When plotting the last element, we want to show the full bar,
#Set the blank to 0
blank.loc["net"] = 0
 
#Plot and label
my_plot = trans.plot(kind='bar', stacked=True, bottom=blank,legend=None, figsize=(10, 5), title="2014 Sales Waterfall")
my_plot.plot(step.index, step.values,'k')
my_plot.set_xlabel("Transaction Types")
 
#Format the axis for dollars
my_plot.yaxis.set_major_formatter(formatter)
 
#Get the y-axis position for the labels
y_height = trans.amount.cumsum().shift(1).fillna(0)
 
#Get an offset so labels don't sit right on top of the bar
max = trans.max()
neg_offset = max / 25
pos_offset = max / 50
plot_offset = int(max / 15)
 
#Start label loop
loop = 0
for index, row in trans.iterrows():
  # For the last item in the list, we don't want to double count
  if row['amount'] == total:
    y = y_height[loop]
  else:
    y = y_height[loop] + row['amount']
  # Determine if we want a neg or pos offset
  if row['amount'] > 0:
    y += pos_offset
  else:
    y -= neg_offset
  my_plot.annotate("{:,.0f}".format(row['amount']),(loop,y),ha="center")
  loop+=1
 
#Scale up the y axis so there is room for the labels
my_plot.set_ylim(0,blank.max()+int(plot_offset))
#Rotate the labels
my_plot.set_xticklabels(trans.index,rotation=0)
my_plot.get_figure().savefig("waterfall.png",dpi=200,bbox_inches='tight')

运行该脚本将生成下面这个漂亮的图表:

利用Python绘制数据的瀑布图的教程

最后的想法

如果你之前不熟悉瀑布图,希望这个示例能够向你展示它到底是多么有用。我想,可能一些人会觉得对于一个图表来说需要这么多的脚本代码有点糟糕。在某些方面,我同意这种想法。如果你仅仅只是做一个瀑布图,而以后不会再碰它,那么你还是继续用Excel中的方法吧。

然而,如果瀑布图真的很有用,并且你需要将它复制给100个客户,将会怎么样呢?接下来你将要怎么做呢?此时使用Excel将会是一个挑战,而使用本文中的脚本来创建100个不同的表格将相当容易。再次说明,这一程序的真正价值在于,当你需要扩展这个解决方案时,它能够便于你创建一个易于复制的程序。

我真的很喜欢学习更多Pandas、matplotlib和IPothon的知识。我很高兴这种方法能够帮到你,并希望其他人也可以从中学习到一些知识,并将这一课所学应用到他们的日常工作中。

Python 相关文章推荐
python使用scrapy解析js示例
Jan 23 Python
Python实现SVN的目录周期性备份实例
Jul 17 Python
python中使用序列的方法
Aug 03 Python
Python的净值数据接口调用示例分享
Mar 15 Python
python3实现字符串的全排列的方法(无重复字符)
Jul 07 Python
Python中出现IndentationError:unindent does not match any outer indentation level错误的解决方法
Apr 18 Python
python的pytest框架之命令行参数详解(下)
Jun 27 Python
python读取图片的几种方式及图像宽和高的存储顺序
Feb 11 Python
详解Python IO口多路复用
Jun 17 Python
python中slice参数过长的处理方法及实例
Dec 15 Python
python for循环赋值问题
Jun 03 Python
教你如何使用Python开发一个钉钉群应答机器人
Jun 21 Python
浅析Python中的多进程与多线程的使用
Apr 07 #Python
Python多线程编程(八):使用Event实现线程间通信
Apr 05 #Python
Python多线程编程(七):使用Condition实现复杂同步
Apr 05 #Python
Python多线程编程(六):可重入锁RLock
Apr 05 #Python
Python多线程编程(五):死锁的形成
Apr 05 #Python
Python多线程编程(四):使用Lock互斥锁
Apr 05 #Python
Python多线程编程(三):threading.Thread类的重要函数和方法
Apr 05 #Python
You might like
用PHP实现小型站点广告管理(修正版)
2006/10/09 PHP
mysql 的 like 问题,超强毕杀记!!!
2007/01/18 PHP
php下载excel无法打开的解决方法
2013/12/24 PHP
PHP缓存集成库phpFastCache用法
2014/12/15 PHP
mysql查找删除重复数据并只保留一条实例详解
2016/09/24 PHP
PHP之header函数详解
2021/03/02 PHP
JS俄罗斯方块,包含完整的设计理念
2010/12/11 Javascript
javascript将相对路径转绝对路径示例
2014/03/14 Javascript
javascript中的遍历for in 以及with的用法
2014/12/22 Javascript
js实现动态加载脚本的方法实例汇总
2015/11/02 Javascript
WordPress中利用AJAX技术进行评论提交的实现示例
2016/01/12 Javascript
js实现鼠标左右移动,图片也跟着移动效果
2017/01/25 Javascript
Ionic学习日记实现验证码倒计时
2018/02/08 Javascript
微信小程序实现滑动切换自定义页码的方法分析
2018/12/29 Javascript
AJAX在JQuery中的应用详解
2019/01/30 jQuery
解决ele ui 表格表头太长问题的实现
2019/11/13 Javascript
js屏蔽F12审查元素,禁止修改页面代码等实现代码
2020/10/02 Javascript
hmac模块生成加入了密钥的消息摘要详解
2018/01/11 Python
python读写LMDB文件的方法
2018/07/02 Python
CSS3 仿微信聊天小气泡实例代码
2017/04/05 HTML / CSS
html5小技巧之通过document.head获取head元素
2014/06/04 HTML / CSS
玖熙女鞋美国官网:Nine West
2016/10/06 全球购物
英国口碑最好的的维他命胶囊品牌:Myvitamins(有中文站)
2016/12/03 全球购物
Hanro官网:奢华男士和女士内衣、睡衣和家居服
2018/10/25 全球购物
俄罗斯一家时尚女装商店:Charuel
2019/12/04 全球购物
SQL Server数据库笔试题和答案
2016/02/04 面试题
UNIX文件系统常用命令
2012/05/25 面试题
党员公开承诺书
2014/03/25 职场文书
个人考核材料
2014/05/15 职场文书
2014年秋季开学演讲稿
2014/05/24 职场文书
公司户外活动总结
2014/07/04 职场文书
2015年乡镇工作总结范文
2015/04/22 职场文书
2015年医院护理部工作总结
2015/04/23 职场文书
综治目标管理责任书
2015/05/11 职场文书
详解vue中v-for的key唯一性
2021/05/15 Vue.js
Vue深入理解插槽slot的使用
2022/08/05 Vue.js