利用Python绘制数据的瀑布图的教程


Posted in Python onApril 07, 2015

介绍

对于绘制某些类型的数据来说,瀑布图是一种十分有用的工具。不足为奇的是,我们可以使用Pandas和matplotlib创建一个可重复的瀑布图。

在往下进行之前,我想先告诉大家我指代的是哪种类型的图表。我将建立一个维基百科文章中描述的2D瀑布图。

这种图表的一个典型的用处是显示开始值和结束值之间起“桥梁”作用的+和-的值。因为这个原因,财务人员有时会将其称为一个桥梁。跟我之前所采用的其他例子相似,这种类型的绘图在Excel中不容易生成,当然肯定有生成它的方法,但是不容易记住。

关于瀑布图需要记住的关键点是:它本质上是一个堆叠在一起的条形图,不过特殊的一点是,它有一个空白底栏,所以顶部栏会“悬浮”在空中。那么,让我们开始吧。
创建图表

首先,执行标准的输入,并确保IPython能显示matplot图。
 

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
 
%matplotlib inline

设置我们想画出瀑布图的数据,并将其加载到数据帧(DataFrame)中。

数据需要以你的起始值开始,但是你需要给出最终的总数。我们将在下面计算它。
 

index = ['sales','returns','credit fees','rebates','late charges','shipping']
data = {'amount': [350000,-30000,-7500,-25000,95000,-7000]}
trans = pd.DataFrame(data=data,index=index)

我使用了IPython中便捷的display函数来更简单地控制我要显示的内容。
 

from IPython.display import display
display(trans)

利用Python绘制数据的瀑布图的教程

瀑布图的最大技巧是计算出底部堆叠条形图的内容。有关这一点,我从stackoverflow上的讨论中学到很多。

首先,我们得到累积和。
 

display(trans.amount.cumsum())
sales      350000
returns     320000
credit fees   312500
rebates     287500
late charges  382500
shipping    375500
Name: amount, dtype: int64

这看起来不错,但我们需要将一个地方的数据转移到右边。
 

blank=trans.amount.cumsum().shift(1).fillna(0)
display(blank)
 
sales        0
returns     350000
credit fees   320000
rebates     312500
late charges  287500
shipping    382500
Name: amount, dtype: float64

我们需要向trans和blank数据帧中添加一个净总量。
 

total = trans.sum().amount
trans.loc["net"] = total
blank.loc["net"] = total
display(trans)
display(blank)

利用Python绘制数据的瀑布图的教程

sales        0
returns     350000
credit fees   320000
rebates     312500
late charges  287500
shipping    382500
net       375500
Name: amount, dtype: float64

创建我们用来显示变化的步骤。

step = blank.reset_index(drop=True).repeat(3).shift(-1)
step[1::3] = np.nan
display(step)
 
0     0
0    NaN
0  350000
1  350000
1    NaN
1  320000
2  320000
2    NaN
2  312500
3  312500
3    NaN
3  287500
4  287500
4    NaN
4  382500
5  382500
5    NaN
5  375500
6  375500
6    NaN
6    NaN
Name: amount, dtype: float64

对于“net”行,为了不使堆叠加倍,我们需要确保blank值为0。
 

blank.loc["net"] = 0

然后,将其画图,看一下什么样子。
 

my_plot = trans.plot(kind='bar', stacked=True, bottom=blank,legend=None, title="2014 Sales Waterfall")
my_plot.plot(step.index, step.values,'k')

利用Python绘制数据的瀑布图的教程

看起来相当不错,但是让我们试着格式化Y轴,以使其更具有可读性。为此,我们使用FuncFormatter和一些Python2.7+的语法来截断小数并向格式中添加一个逗号。
 

def money(x, pos):
  'The two args are the value and tick position'
  return "${:,.0f}".format(x)
 
from matplotlib.ticker import FuncFormatter
formatter = FuncFormatter(money)

然后,将其组合在一起。
 

my_plot = trans.plot(kind='bar', stacked=True, bottom=blank,legend=None, title="2014 Sales Waterfall")
my_plot.plot(step.index, step.values,'k')
my_plot.set_xlabel("Transaction Types")
my_plot.yaxis.set_major_formatter(formatter)

利用Python绘制数据的瀑布图的教程

完整脚本

基本图形能够正常工作,但是我想添加一些标签,并做一些小的格式修改。下面是我最终的脚本:
 

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.ticker import FuncFormatter
 
#Use python 2.7+ syntax to format currency
def money(x, pos):
  'The two args are the value and tick position'
  return "${:,.0f}".format(x)
formatter = FuncFormatter(money)
 
#Data to plot. Do not include a total, it will be calculated
index = ['sales','returns','credit fees','rebates','late charges','shipping']
data = {'amount': [350000,-30000,-7500,-25000,95000,-7000]}
 
#Store data and create a blank series to use for the waterfall
trans = pd.DataFrame(data=data,index=index)
blank = trans.amount.cumsum().shift(1).fillna(0)
 
#Get the net total number for the final element in the waterfall
total = trans.sum().amount
trans.loc["net"]= total
blank.loc["net"] = total
 
#The steps graphically show the levels as well as used for label placement
step = blank.reset_index(drop=True).repeat(3).shift(-1)
step[1::3] = np.nan
 
#When plotting the last element, we want to show the full bar,
#Set the blank to 0
blank.loc["net"] = 0
 
#Plot and label
my_plot = trans.plot(kind='bar', stacked=True, bottom=blank,legend=None, figsize=(10, 5), title="2014 Sales Waterfall")
my_plot.plot(step.index, step.values,'k')
my_plot.set_xlabel("Transaction Types")
 
#Format the axis for dollars
my_plot.yaxis.set_major_formatter(formatter)
 
#Get the y-axis position for the labels
y_height = trans.amount.cumsum().shift(1).fillna(0)
 
#Get an offset so labels don't sit right on top of the bar
max = trans.max()
neg_offset = max / 25
pos_offset = max / 50
plot_offset = int(max / 15)
 
#Start label loop
loop = 0
for index, row in trans.iterrows():
  # For the last item in the list, we don't want to double count
  if row['amount'] == total:
    y = y_height[loop]
  else:
    y = y_height[loop] + row['amount']
  # Determine if we want a neg or pos offset
  if row['amount'] > 0:
    y += pos_offset
  else:
    y -= neg_offset
  my_plot.annotate("{:,.0f}".format(row['amount']),(loop,y),ha="center")
  loop+=1
 
#Scale up the y axis so there is room for the labels
my_plot.set_ylim(0,blank.max()+int(plot_offset))
#Rotate the labels
my_plot.set_xticklabels(trans.index,rotation=0)
my_plot.get_figure().savefig("waterfall.png",dpi=200,bbox_inches='tight')

运行该脚本将生成下面这个漂亮的图表:

利用Python绘制数据的瀑布图的教程

最后的想法

如果你之前不熟悉瀑布图,希望这个示例能够向你展示它到底是多么有用。我想,可能一些人会觉得对于一个图表来说需要这么多的脚本代码有点糟糕。在某些方面,我同意这种想法。如果你仅仅只是做一个瀑布图,而以后不会再碰它,那么你还是继续用Excel中的方法吧。

然而,如果瀑布图真的很有用,并且你需要将它复制给100个客户,将会怎么样呢?接下来你将要怎么做呢?此时使用Excel将会是一个挑战,而使用本文中的脚本来创建100个不同的表格将相当容易。再次说明,这一程序的真正价值在于,当你需要扩展这个解决方案时,它能够便于你创建一个易于复制的程序。

我真的很喜欢学习更多Pandas、matplotlib和IPothon的知识。我很高兴这种方法能够帮到你,并希望其他人也可以从中学习到一些知识,并将这一课所学应用到他们的日常工作中。

Python 相关文章推荐
Python设计模式之代理模式实例
Apr 26 Python
利用ctypes提高Python的执行速度
Sep 09 Python
python2.7的编码问题与解决方法
Oct 04 Python
python re模块findall()函数实例解析
Jan 19 Python
python 每天如何定时启动爬虫任务(实现方法分享)
May 21 Python
python 地图经纬度转换、纠偏的实例代码
Aug 06 Python
python操作kafka实践的示例代码
Jun 19 Python
Python学习笔记之Django创建第一个数据库模型的方法
Aug 07 Python
10行Python代码计算汽车数量的实现方法
Oct 23 Python
python 实现按对象传值
Dec 26 Python
TensorFlow实现自定义Op方式
Feb 04 Python
设置jupyter中DataFrame的显示限制方式
Apr 12 Python
浅析Python中的多进程与多线程的使用
Apr 07 #Python
Python多线程编程(八):使用Event实现线程间通信
Apr 05 #Python
Python多线程编程(七):使用Condition实现复杂同步
Apr 05 #Python
Python多线程编程(六):可重入锁RLock
Apr 05 #Python
Python多线程编程(五):死锁的形成
Apr 05 #Python
Python多线程编程(四):使用Lock互斥锁
Apr 05 #Python
Python多线程编程(三):threading.Thread类的重要函数和方法
Apr 05 #Python
You might like
php下将图片以二进制存入mysql数据库中并显示的实现代码
2010/05/27 PHP
将一维或多维的数组连接成一个字符串的php代码
2010/08/08 PHP
php学习笔记 php中面向对象三大特性之一[封装性]的应用
2011/06/13 PHP
解析获取优酷视频真实下载地址的PHP源代码
2013/06/26 PHP
PHP实现图片不变型裁剪及图片按比例裁剪的方法
2016/01/14 PHP
php 获取文件行数的方法总结
2016/10/11 PHP
CodeIgniter框架常见用法工作总结
2017/03/16 PHP
PHP http请求超时问题解决方案
2020/11/13 PHP
图片延迟加载的实现代码(模仿懒惰)
2013/03/29 Javascript
jquery图片轮播插件仿支付宝2013版全屏图片幻灯片
2014/04/03 Javascript
JavaScript简介
2015/02/15 Javascript
浅谈JavaScript中变量和函数声明的提升
2016/08/09 Javascript
javascript设计模式Constructor(构造器)模式
2016/08/19 Javascript
javascript循环链表之约瑟夫环的实现方法
2017/01/16 Javascript
JS实现的模仿QQ头像资料卡显示与隐藏效果
2017/04/07 Javascript
基于zepto.js实现手机相册功能
2017/07/11 Javascript
强大的JavaScript响应式图表Chartist.js的使用
2017/09/13 Javascript
vue2.0+vue-router构建一个简单的列表页的示例代码
2019/02/13 Javascript
ES6中字符串的使用方法扩展
2019/06/04 Javascript
layui富文本编辑器前端无法取值的解决方法
2019/09/18 Javascript
PyQt5 QTable插入图片并动态更新的实例
2019/06/18 Python
利用pandas将非数值数据转换成数值的方式
2019/12/18 Python
numpy中生成随机数的几种常用函数(小结)
2020/08/18 Python
html5设计原理(推荐收藏)
2014/05/17 HTML / CSS
boostrap modal 闪现问题的解决方法
2020/09/01 HTML / CSS
Crabtree & Evelyn英国官网:瑰珀翠护手霜、香水、沐浴和身体护理
2018/04/26 全球购物
世界上最大的高分辨率在线图片库:Alamy
2018/07/07 全球购物
加拿大租车网站:Enterprise Rent-A-Car
2018/07/26 全球购物
随机分配座位,共50个学生,使学号相邻的同学座位不能相邻
2014/01/18 面试题
公交公司毕业生求职信
2014/02/15 职场文书
《在大海中永生》教学反思
2014/02/24 职场文书
户籍证明格式
2014/09/15 职场文书
《确定位置》教学反思
2016/02/18 职场文书
先进个人事迹材料(2016推荐版)
2016/03/01 职场文书
PHP解决高并发问题
2021/04/01 PHP
将图片保存到mysql数据库并展示在前端页面的实现代码
2021/05/02 MySQL