Posted in Python onApril 25, 2014
Simhash的算法简单的来说就是,从海量文本中快速搜索和已知simhash相差小于k位的simhash集合,这里每个文本都可以用一个simhash值来代表,一个simhash有64bit,相似的文本,64bit也相似,论文中k的经验值为3。该方法的缺点如优点一样明显,主要有两点,对于短文本,k值很敏感;另一个是由于算法是以空间换时间,系统内存吃不消。
#!/usr/bin/python # coding=utf-8 class simhash: #构造函数 def __init__(self, tokens='', hashbits=128): self.hashbits = hashbits self.hash = self.simhash(tokens); #toString函数 def __str__(self): return str(self.hash) #生成simhash值 def simhash(self, tokens): v = [0] * self.hashbits for t in [self._string_hash(x) for x in tokens]: #t为token的普通hash值 for i in range(self.hashbits): bitmask = 1 << i if t & bitmask : v[i] += 1 #查看当前bit位是否为1,是的话将该位+1 else: v[i] -= 1 #否则的话,该位-1 fingerprint = 0 for i in range(self.hashbits): if v[i] >= 0: fingerprint += 1 << i return fingerprint #整个文档的fingerprint为最终各个位>=0的和 #求海明距离 def hamming_distance(self, other): x = (self.hash ^ other.hash) & ((1 << self.hashbits) - 1) tot = 0; while x : tot += 1 x &= x - 1 return tot #求相似度 def similarity (self, other): a = float(self.hash) b = float(other.hash) if a > b : return b / a else: return a / b #针对source生成hash值 (一个可变长度版本的Python的内置散列) def _string_hash(self, source): if source == "": return 0 else: x = ord(source[0]) << 7 m = 1000003 mask = 2 ** self.hashbits - 1 for c in source: x = ((x * m) ^ ord(c)) & mask x ^= len(source) if x == -1: x = -2 return x if __name__ == '__main__': s = 'This is a test string for testing' hash1 = simhash(s.split()) s = 'This is a test string for testing also' hash2 = simhash(s.split()) s = 'nai nai ge xiong cao' hash3 = simhash(s.split()) print(hash1.hamming_distance(hash2) , " " , hash1.similarity(hash2)) print(hash1.hamming_distance(hash3) , " " , hash1.similarity(hash3))
python实现simhash算法实例
声明:登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。
Reply on: @reply_date@
@reply_contents@