Anaconda配置各版本Pytorch的实现


Posted in Python onAugust 07, 2021

1. 前言

利用 Anaconda 配置 Pytorch 深度学习环境时利用官网链接给出的安装指令安装会很慢,而且经常报错,为此整理目前全版本 pytorch 深度学习环境配置指令,以下指令适用 Windows 操作系统,在 Anaconda Prompt 中运行。

2. 配置镜像源

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge 
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --set show_channel_urls yes

3. pytorch,torchvision,python 版本对应

pytorch,torchvision,python 三者的对应关系来源于 pytorch 官方 github,链接:https://github.com/pytorch/vision#installation

Anaconda配置各版本Pytorch的实现

4. 创建并进入虚拟环境

创建一个虚拟环境,其中 pt 是自定义虚拟环境名称,另外根据踩坑经验 python 3.6.5 版本可以适配所有版本的 pytorch,建议创建环境时 python 解释器版本选择 3.6.5 版本。

conda create -n pt python=3.6.5

随后点击 y 同意安装,等待一会进入虚拟环境。

activate pt

5. Pytorch 0.4.1

conda install pytorch==0.4.1 torchvision==0.2.1 cuda90  # CUDA 9.0
conda install pytorch==0.4.1 torchvision==0.2.1 cuda92  # CUDA 9.2
conda install pytorch==0.4.1 torchvision==0.2.1 cuda80  # CUDA 8.0
conda install pytorch==0.4.1 torchvision==0.2.1 cuda75  # CUDA 7.5
conda install pytorch==0.4.1 torchvision==0.2.1 cpuonly  # CPU 版本

6. Pytorch 1.0.0

conda install pytorch==1.0.0 torchvision==0.2.1 cuda100  # CUDA 10.0
conda install pytorch==1.0.0 torchvision==0.2.1 cuda90  # CUDA 9.0
conda install pytorch==1.0.0 torchvision==0.2.1 cuda80  # CUDA 8.0
conda install pytorch-cpu==1.0.0 torchvision-cpu==0.2.1 cpuonly  # CPU 版本

7. Pytorch 1.0.1

conda install pytorch==1.0.1 torchvision==0.2.2 cudatoolkit=9.0  # CUDA 9.0
conda install pytorch==1.0.1 torchvision==0.2.2 cudatoolkit=10.0  # CUDA 10.0
conda install pytorch-cpu==1.0.1 torchvision-cpu==0.2.2 cpuonly  # CPU 版本

8. Pytorch 1.1.0

conda install pytorch==1.1.0 torchvision==0.3.0 cudatoolkit=9.0  # CUDA 9.0
conda install pytorch==1.1.0 torchvision==0.3.0 cudatoolkit=10.0  # CUDA 10.0
conda install pytorch-cpu==1.1.0 torchvision-cpu==0.3.0 cpuonly  # CPU O版本

9. Pytorch 1.2.0

conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=9.2  # CUDA 9.2
conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=10.0  # CUDA 10.0
conda install pytorch==1.2.0 torchvision==0.4.0 cpuonly  # CPU 版本

10. Pytorch 1.4.0

conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=9.2  # CUDA 9.2
conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=10.1  # CUDA 10.1
conda install pytorch==1.4.0 torchvision==0.5.0 cpuonly  # CPU 版本

11. Pytorch 1.5.0

conda install pytorch==1.5.0 torchvision==0.6.0 cudatoolkit=9.2  # CUDA 9.2
conda install pytorch==1.5.0 torchvision==0.6.0 cudatoolkit=10.1  # CUDA 10.1
conda install pytorch==1.5.0 torchvision==0.6.0 cudatoolkit=10.2  # CUDA 10.2
conda install pytorch==1.5.0 torchvision==0.6.0 cpuonly  # CPU 版本

12. Pytorch 1.5.1

conda install pytorch==1.5.1 torchvision==0.6.1 cudatoolkit=9.2  # CUDA 9.2
conda install pytorch==1.5.1 torchvision==0.6.1 cudatoolkit=10.1  # CUDA 10.1
conda install pytorch==1.5.1 torchvision==0.6.1 cudatoolkit=10.2  # CUDA 10.2
conda install pytorch==1.5.1 torchvision==0.6.1 cpuonly  # CPU 版本

13. Pytorch 1.6.0

conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=9.2  # CUDA 9.2
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.1  # CUDA 10.1
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.2  # CUDA 10.2
conda install pytorch==1.6.0 torchvision==0.7.0 cpuonly  # CPU 版本

14. Pytorch 1.7.0

conda install pytorch==1.7.0 torchvision==0.8.0 cudatoolkit=9.2  # CUDA 9.2
conda install pytorch==1.7.0 torchvision==0.8.0 cudatoolkit=10.1  # CUDA 10.1
conda install pytorch==1.7.0 torchvision==0.8.0 cudatoolkit=10.2  # CUDA 10.2
conda install pytorch==1.7.0 torchvision==0.8.0 cudatoolkit=11.0  # CUDA 11.0
conda install pytorch==1.7.0 torchvision==0.8.0 cpuonly  # CPU 版本

15. Pytorch 1.7.1

conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=9.2  # CUDA 9.2
conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.1  # CUDA 10.1
conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.2  # CUDA 10.2
conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=11.0  # CUDA 11.0
conda install pytorch==1.7.1 torchvision==0.8.2 cpuonly  # CPU 版本

16. Pytorch 1.8.0

conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=10.2  # CUDA 10.2
conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=11.1  # CUDA 11.1
conda install pytorch==1.8.0 torchvision==0.9.0 cpuonly  # CPU 版本

17. Pytorch 1.9.0

conda install pytorch==1.9.0 torchvision==0.10.0 cudatoolkit=10.2  # CUDA 10.2
conda install pytorch==1.9.0 torchvision==0.10.0 cudatoolkit=11.1  # CUDA 11.1
conda install pytorch==1.9.0 torchvision==0.10.0 cpuonly  # CPU 版本

18. 测试是否安装成功

  • CPU 版本测试:继续运行 python 进入交互式环境,分别运行 import torchimport torchvision 不报错则安装成功。
  • GPU 版本测试:继续运行 python 进入交互式环境,分别运行 import torchimport torchvision 不报错, 再运行 print(torch.cuda.is_available()) 输出 Ture 则表示安装成功。

到此这篇关于Anaconda配置各版本Pytorch的实现的文章就介绍到这了,更多相关Anaconda配置Pytorch内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python网络编程学习笔记(九):数据库客户端 DB-API
Jun 09 Python
Python算法之栈(stack)的实现
Aug 18 Python
python编程实现希尔排序
Apr 13 Python
django admin添加数据自动记录user到表中的实现方法
Jan 05 Python
Flask之请求钩子的实现
Dec 23 Python
python 爬虫百度地图的信息界面的实现方法
Oct 27 Python
Python 中如何实现参数化测试的方法示例
Dec 10 Python
关于tensorflow的几种参数初始化方法小结
Jan 04 Python
python itsdangerous模块的具体使用方法
Feb 17 Python
Python configparser模块配置文件过程解析
Mar 03 Python
python线程池 ThreadPoolExecutor 的用法示例
Oct 10 Python
python调用百度AI接口实现人流量统计
Feb 03 Python
python开发的自动化运维工具ansible详解
Python初识逻辑与if语句及用法大全
Aug 07 #Python
python之json文件转xml文件案例讲解
Aug 07 #Python
一篇文章弄懂Python中的内建函数
Aug 07 #Python
Python 可迭代对象 iterable的具体使用
Aug 07 #Python
Python pandas之求和运算和非空值个数统计
Aug 07 #Python
关于Python中*args和**kwargs的深入理解
Aug 07 #Python
You might like
php中文本操作的类
2007/03/17 PHP
PHP学习笔记 用户注册模块用户类以及验证码类
2011/09/20 PHP
PHP怎么实现网站保存快捷方式方便用户随时浏览
2013/08/15 PHP
ThinkPHP模板引擎之导入资源文件方法详解
2014/06/18 PHP
php中static 静态变量和普通变量的区别
2016/12/01 PHP
php设计模式之观察者模式实例详解【星际争霸游戏案例】
2020/03/30 PHP
ext form 表单提交数据的方法小结
2008/08/08 Javascript
javascript fullscreen全屏实现代码
2009/04/09 Javascript
JavaScript的parseInt 进制问题
2009/05/07 Javascript
使用JavaScript库还是自己写代码?
2010/01/28 Javascript
容易被忽略的JS脚本特性
2011/09/13 Javascript
Javascript保存网页为图片借助于html2canvas库实现
2014/09/05 Javascript
jQuery制作仿Mac Lion OS滚动条效果
2015/02/10 Javascript
浅谈JavaScript中setInterval和setTimeout的使用问题
2015/08/01 Javascript
js实现的黑背景灰色二级导航菜单效果代码
2015/08/24 Javascript
jQuery表单事件实例代码分享
2016/08/18 Javascript
基于javascript实现按圆形排列DIV元素(三)
2016/12/02 Javascript
vue中将网页打印成pdf实例代码
2017/06/15 Javascript
Vue2.0用户权限控制解决方案的示例
2018/02/10 Javascript
angular学习之动态创建表单的方法
2018/12/07 Javascript
使用mixins实现elementUI表单全局验证的解决方法
2019/04/02 Javascript
使用VScode 插件debugger for chrome 调试react源码的方法
2019/09/13 Javascript
Python程序中使用SQLAlchemy时出现乱码的解决方案
2015/04/24 Python
使用Python对SQLite数据库操作
2017/04/06 Python
Python数据分析中Groupby用法之通过字典或Series进行分组的实例
2017/12/08 Python
Python中的元组介绍
2019/01/28 Python
Python无头爬虫下载文件的实现
2020/04/02 Python
使用python实现微信小程序自动签到功能
2020/04/27 Python
一款css实现的鼠标经过按钮的特效
2014/09/11 HTML / CSS
CSS3中的content属性使用示例
2015/07/20 HTML / CSS
AVON雅芳官网:世界上最大的美容化妆品公司之一
2016/11/02 全球购物
英国皇家造币厂:The Royal Mint
2018/10/05 全球购物
大三毕业自我鉴定
2014/01/15 职场文书
秋季运动会稿件
2014/01/30 职场文书
2014年前台个人工作总结
2014/11/14 职场文书
考研英语辞职信
2015/05/13 职场文书