Anaconda配置各版本Pytorch的实现


Posted in Python onAugust 07, 2021

1. 前言

利用 Anaconda 配置 Pytorch 深度学习环境时利用官网链接给出的安装指令安装会很慢,而且经常报错,为此整理目前全版本 pytorch 深度学习环境配置指令,以下指令适用 Windows 操作系统,在 Anaconda Prompt 中运行。

2. 配置镜像源

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge 
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --set show_channel_urls yes

3. pytorch,torchvision,python 版本对应

pytorch,torchvision,python 三者的对应关系来源于 pytorch 官方 github,链接:https://github.com/pytorch/vision#installation

Anaconda配置各版本Pytorch的实现

4. 创建并进入虚拟环境

创建一个虚拟环境,其中 pt 是自定义虚拟环境名称,另外根据踩坑经验 python 3.6.5 版本可以适配所有版本的 pytorch,建议创建环境时 python 解释器版本选择 3.6.5 版本。

conda create -n pt python=3.6.5

随后点击 y 同意安装,等待一会进入虚拟环境。

activate pt

5. Pytorch 0.4.1

conda install pytorch==0.4.1 torchvision==0.2.1 cuda90  # CUDA 9.0
conda install pytorch==0.4.1 torchvision==0.2.1 cuda92  # CUDA 9.2
conda install pytorch==0.4.1 torchvision==0.2.1 cuda80  # CUDA 8.0
conda install pytorch==0.4.1 torchvision==0.2.1 cuda75  # CUDA 7.5
conda install pytorch==0.4.1 torchvision==0.2.1 cpuonly  # CPU 版本

6. Pytorch 1.0.0

conda install pytorch==1.0.0 torchvision==0.2.1 cuda100  # CUDA 10.0
conda install pytorch==1.0.0 torchvision==0.2.1 cuda90  # CUDA 9.0
conda install pytorch==1.0.0 torchvision==0.2.1 cuda80  # CUDA 8.0
conda install pytorch-cpu==1.0.0 torchvision-cpu==0.2.1 cpuonly  # CPU 版本

7. Pytorch 1.0.1

conda install pytorch==1.0.1 torchvision==0.2.2 cudatoolkit=9.0  # CUDA 9.0
conda install pytorch==1.0.1 torchvision==0.2.2 cudatoolkit=10.0  # CUDA 10.0
conda install pytorch-cpu==1.0.1 torchvision-cpu==0.2.2 cpuonly  # CPU 版本

8. Pytorch 1.1.0

conda install pytorch==1.1.0 torchvision==0.3.0 cudatoolkit=9.0  # CUDA 9.0
conda install pytorch==1.1.0 torchvision==0.3.0 cudatoolkit=10.0  # CUDA 10.0
conda install pytorch-cpu==1.1.0 torchvision-cpu==0.3.0 cpuonly  # CPU O版本

9. Pytorch 1.2.0

conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=9.2  # CUDA 9.2
conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=10.0  # CUDA 10.0
conda install pytorch==1.2.0 torchvision==0.4.0 cpuonly  # CPU 版本

10. Pytorch 1.4.0

conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=9.2  # CUDA 9.2
conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=10.1  # CUDA 10.1
conda install pytorch==1.4.0 torchvision==0.5.0 cpuonly  # CPU 版本

11. Pytorch 1.5.0

conda install pytorch==1.5.0 torchvision==0.6.0 cudatoolkit=9.2  # CUDA 9.2
conda install pytorch==1.5.0 torchvision==0.6.0 cudatoolkit=10.1  # CUDA 10.1
conda install pytorch==1.5.0 torchvision==0.6.0 cudatoolkit=10.2  # CUDA 10.2
conda install pytorch==1.5.0 torchvision==0.6.0 cpuonly  # CPU 版本

12. Pytorch 1.5.1

conda install pytorch==1.5.1 torchvision==0.6.1 cudatoolkit=9.2  # CUDA 9.2
conda install pytorch==1.5.1 torchvision==0.6.1 cudatoolkit=10.1  # CUDA 10.1
conda install pytorch==1.5.1 torchvision==0.6.1 cudatoolkit=10.2  # CUDA 10.2
conda install pytorch==1.5.1 torchvision==0.6.1 cpuonly  # CPU 版本

13. Pytorch 1.6.0

conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=9.2  # CUDA 9.2
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.1  # CUDA 10.1
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.2  # CUDA 10.2
conda install pytorch==1.6.0 torchvision==0.7.0 cpuonly  # CPU 版本

14. Pytorch 1.7.0

conda install pytorch==1.7.0 torchvision==0.8.0 cudatoolkit=9.2  # CUDA 9.2
conda install pytorch==1.7.0 torchvision==0.8.0 cudatoolkit=10.1  # CUDA 10.1
conda install pytorch==1.7.0 torchvision==0.8.0 cudatoolkit=10.2  # CUDA 10.2
conda install pytorch==1.7.0 torchvision==0.8.0 cudatoolkit=11.0  # CUDA 11.0
conda install pytorch==1.7.0 torchvision==0.8.0 cpuonly  # CPU 版本

15. Pytorch 1.7.1

conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=9.2  # CUDA 9.2
conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.1  # CUDA 10.1
conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.2  # CUDA 10.2
conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=11.0  # CUDA 11.0
conda install pytorch==1.7.1 torchvision==0.8.2 cpuonly  # CPU 版本

16. Pytorch 1.8.0

conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=10.2  # CUDA 10.2
conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=11.1  # CUDA 11.1
conda install pytorch==1.8.0 torchvision==0.9.0 cpuonly  # CPU 版本

17. Pytorch 1.9.0

conda install pytorch==1.9.0 torchvision==0.10.0 cudatoolkit=10.2  # CUDA 10.2
conda install pytorch==1.9.0 torchvision==0.10.0 cudatoolkit=11.1  # CUDA 11.1
conda install pytorch==1.9.0 torchvision==0.10.0 cpuonly  # CPU 版本

18. 测试是否安装成功

  • CPU 版本测试:继续运行 python 进入交互式环境,分别运行 import torchimport torchvision 不报错则安装成功。
  • GPU 版本测试:继续运行 python 进入交互式环境,分别运行 import torchimport torchvision 不报错, 再运行 print(torch.cuda.is_available()) 输出 Ture 则表示安装成功。

到此这篇关于Anaconda配置各版本Pytorch的实现的文章就介绍到这了,更多相关Anaconda配置Pytorch内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python正则表达式抓取成语网站
Nov 20 Python
介绍Python中的文档测试模块
Apr 28 Python
Python实现图片滑动式验证识别方法
Nov 09 Python
Python将文本去空格并保存到txt文件中的实例
Jul 24 Python
python画图的函数用法以及技巧
Jun 28 Python
python-视频分帧&多帧合成视频实例
Dec 10 Python
opencv设置采集视频分辨率方式
Dec 10 Python
python3操作注册表的方法(Url protocol)
Feb 05 Python
在Django中预防CSRF攻击的操作
Mar 13 Python
python代码实现将列表中重复元素之间的内容全部滤除
May 22 Python
pytorch加载自己的图像数据集实例
Jul 07 Python
Python turtle实现贪吃蛇游戏
Jun 18 Python
python开发的自动化运维工具ansible详解
Python初识逻辑与if语句及用法大全
Aug 07 #Python
python之json文件转xml文件案例讲解
Aug 07 #Python
一篇文章弄懂Python中的内建函数
Aug 07 #Python
Python 可迭代对象 iterable的具体使用
Aug 07 #Python
Python pandas之求和运算和非空值个数统计
Aug 07 #Python
关于Python中*args和**kwargs的深入理解
Aug 07 #Python
You might like
如何在PHP中进行身份认证
2006/10/09 PHP
php中删除、清空session的方式总结
2015/10/09 PHP
thinkPHP3.2使用RBAC实现权限管理的实现
2019/08/27 PHP
JS 继承实例分析
2008/11/04 Javascript
得到jQuery detach()后节点中的某个值实现代码
2013/02/05 Javascript
检查输入的是否是数字使用keyCode配合onkeypress事件
2014/01/23 Javascript
解决Jquery鼠标经过不停滑动的问题
2014/03/03 Javascript
node.js适合游戏后台开发吗?
2014/09/03 Javascript
js Object2String方便查看js对象内容
2014/11/24 Javascript
编写简单的jQuery提示插件
2014/12/21 Javascript
推荐一个自己用的封装好的javascript插件
2015/01/29 Javascript
基于jQuery+PHP+Mysql实现在线拍照和在线浏览照片
2015/09/06 Javascript
深入理解jquery中extend的实现
2016/12/22 Javascript
boostrapTable的refresh和refreshOptions区别浅析
2017/01/22 Javascript
Bootstrap栅格系统使用方法及页面调整变形的解决方法
2017/03/10 Javascript
easyui-datagrid开发实践(总结)
2017/08/02 Javascript
Vue表单类的父子组件数据传递示例
2018/05/03 Javascript
[00:42]《辉夜杯》—职业组预选赛12月3日15点 正式打响
2015/12/03 DOTA
Python利用BeautifulSoup解析Html的方法示例
2017/07/30 Python
python如何生成各种随机分布图
2018/08/27 Python
python 多线程对post请求服务器测试并发的方法
2019/06/13 Python
用Python实现最速下降法求极值的方法
2019/07/10 Python
浅谈python多进程共享变量Value的使用tips
2019/07/16 Python
Pycharm配置PyQt5环境的教程
2020/04/02 Python
Python图像读写方法对比
2020/11/16 Python
美国顶级水上运动专业店:Marine Products
2018/04/15 全球购物
基层工作经历证明
2014/01/13 职场文书
教堂婚礼主持词
2014/03/14 职场文书
大跃进口号
2014/06/16 职场文书
培训通知
2015/04/17 职场文书
同乡会致辞
2015/07/30 职场文书
银行文明优质服务培训心得体会
2016/01/09 职场文书
2016优秀教师先进个人事迹材料
2016/02/25 职场文书
如何书写民事调解协议书?
2019/06/25 职场文书
MySQL利用UNION连接2个查询排序失效详解
2021/11/20 MySQL
nginx sticky实现基于cookie负载均衡示例详解
2022/12/24 Servers