python 爬取京东指定商品评论并进行情感分析


Posted in Python onMay 27, 2021

项目地址

https://github.com/DA1YAYUAN/JD-comments-sentiment-analysis

爬取京东商城中指定商品下的用户评论,对数据预处理后基于SnowNLP的sentiment模块对文本进行情感分析。

运行环境

  • Mac OS X
  • Python3.7 requirements.txt
  • Pycharm

运行方法

数据爬取(jd.comment.py)

  1. 启动jd_comment.py,建议修改jd_comment.py中变量user-agent为自己浏览器用户代理
  2. 输入京东商品完整URL
  3. 得到京东评论词云,存放于jd_ciyun.jpg(词云轮廓形状存放于jdicon.jpg)
  4. 得到京东评论数据,存放于jd_comment.csv
import os
import time
import json
import random
import csv
import re

import jieba
import requests
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
from wordcloud import WordCloud

# 词云形状图片
WC_MASK_IMG = 'jdicon.jpg'
# 评论数据保存文件
COMMENT_FILE_PATH = 'jd_comment.txt'
# 词云字体
WC_FONT_PATH = '/Library/Fonts/Songti.ttc'


def spider_comment(page=0, key=0):
    """
    爬取京东指定页的评价数据
    :param page: 爬取第几,默认值为0
    """

    url = 'https://club.jd.com/comment/productPageComments.action?callback=fetchJSON_comment98vv4646&productId=' + key + '' \
          '&score=0&sortType=5&page=%s&pageSize=10&isShadowSku=0&fold=1' % page
    kv = {'user-agent': 'Mozilla/5.0', 'Referer': 'https://item.jd.com/'+ key + '.html'}#原本key不输入值,默认为《三体》

    try:
        r = requests.get(url, headers=kv)
        r.raise_for_status()
    except:
        print('爬取失败')
    # 截取json数据字符串
    r_json_str = r.text[26:-2]
    # 字符串转json对象
    r_json_obj = json.loads(r_json_str)
    # 获取评价列表数据
    r_json_comments = r_json_obj['comments']
    # 遍历评论对象列表
    for r_json_comment in r_json_comments:
        # 以追加模式换行写入每条评价
        with open(COMMENT_FILE_PATH, 'a+') as file:
            file.write(r_json_comment['content'] + '\n')
        # 打印评论对象中的评论内容
        print(r_json_comment['content'])


def batch_spider_comment():
    """
        批量爬取某东评价
        """
    # 写入数据前先清空之前的数据
    if os.path.exists(COMMENT_FILE_PATH):
        os.remove(COMMENT_FILE_PATH)
    key = input("Please enter the address:")
    key = re.sub("\D","",key)
    #通过range来设定爬取的页面数
    for i in range(10):
        spider_comment(i,key)
        # 模拟用户浏览,设置一个爬虫间隔,防止ip被封
        time.sleep(random.random() * 5)


def cut_word():
    """
    对数据分词
    :return: 分词后的数据
    """
    with open(COMMENT_FILE_PATH) as file:
        comment_txt = file.read()
        wordlist = jieba.cut(comment_txt, cut_all=False)#精确模式
        wl = " ".join(wordlist)
        print(wl)
        return wl


def create_word_cloud():
    """44144127306
    生成词云
    :return:
    """
    # 设置词云形状图片
    wc_mask = np.array(Image.open(WC_MASK_IMG))
    # 设置词云的一些配置,如:字体,背景色,词云形状,大小
    wc = WordCloud(background_color="white", max_words=2000, mask=wc_mask, scale=4,
                   max_font_size=50, random_state=42, font_path=WC_FONT_PATH)
    # 生成词云
    wc.generate(cut_word())
    # 在只设置mask的情况下,你将会得到一个拥有图片形状的词云
    plt.imshow(wc, interpolation="bilinear")
    plt.axis("off")
    plt.figure()
    plt.show()
    wc.to_file("jd_ciyun.jpg")


def txt_change_to_csv():
    with open('jd_comment.csv', 'w+', encoding="utf8", newline='')as c:
        writer_csv = csv.writer(c, dialect="excel")
        with open("jd_comment.txt", 'r', encoding='utf8')as f:
            # print(f.readlines())
            for line in f.readlines():
                # 去掉str左右端的空格并以空格分割成list
                line_list = line.strip('\n').split(',')
                print(line_list)
                writer_csv.writerow(line_list)

if __name__ == '__main__':
    # 爬取数据
    batch_spider_comment()

    #转换数据
    txt_change_to_csv()

    # 生成词云
    create_word_cloud()

模型训练(train.py)

  1. 准备正负语料集online_shopping_10_cats.csv,分别存入negative.txt和positive.txt
  2. 启动train.py,新建文件sentiment.marshal,存入训练后的模型
  3. 找到外部库中snownlp中sentiment模块,将训练得到的sentiment.marshal.3文件覆盖sentiment模块中自带的sentiment.marshal.3
# -*-coding:utf-8-*-

def train():
    from snownlp import sentiment
    print("开始训练数据集...")
    sentiment.train('negative.txt', 'positive.txt')#自己准备数据集
    sentiment.save('sentiment.marshal')#保存训练模型
    #python2保存的是sentiment.marshal;python3保存的是sentiment.marshal.3
    "训练完成后,将训练完的模型,替换sentiment中的模型"

def main():
    train()  # 训练正负向商品评论数据集
    print("数据集训练完成!")

if __name__ == '__main__':
    main()

情感分析(sentiment.analysis.py)

  1. 启动sentiment.analysis.py
  2. 开始对jd_comment.csv中评论进行数据处理,处理后文件存入processed_comment_data.csv
  3. sentiment模块根据sentiment.marshal.3对评论进行情感评分,评分结果存入result.csv
  4. 评分结果可视化,生成文件fig.png
from snownlp import sentiment
import pandas as pd
import snownlp
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties

#from word_cloud import word_cloud_creation, word_cloud_implementation, word_cloud_settings

def read_csv():
    '''读取商品评论数据文件'''
    comment_data = pd.read_csv('jd_comment.csv', encoding='utf-8',
                               sep='\n', index_col=None)
    #返回评论作为参数
    return comment_data


def clean_data(data):
    '''数据清洗'''
    df = data.dropna()  # 消除缺失数据 NaN为缺失数据
    df = pd.DataFrame(df.iloc[:, 0].unique())  # 数据去重
    return df
    # print('数据清洗后:', len(df))


def clean_repeat_word(raw_str, reverse=False):
    '''去除评论中的重复使用的词汇'''
    if reverse:
        raw_str = raw_str[::-1]
    res_str = ''
    for i in raw_str:
        if i not in res_str:
            res_str += i
    if reverse:
        res_str = res_str[::-1]
    return res_str


def processed_data(filename):
    '''清洗完毕的数据,并保存'''
    df = clean_data(read_csv())#数据清洗
    ser1 = df.iloc[:, 0].apply(clean_repeat_word)#去除重复词汇
    df2 = pd.DataFrame(ser1.apply(clean_repeat_word, reverse=True))
    df2.to_csv(f'{filename}.csv', encoding='utf-8', index_label=None, index=None)


def train():
    '''训练正向和负向情感数据集,并保存训练模型'''
    sentiment.train('negative.txt', 'positive.txt')
    sentiment.save('seg.marshal')#python2保存的是sentiment.marshal;python3保存的是sentiment.marshal.3


sentiment_list = []

res_list = []


def test(filename, to_filename):
    '''商品评论-情感分析-测试'''
    with open(f'{filename}.csv', 'r', encoding='utf-8') as fr:
        for line in fr.readlines():
            s = snownlp.SnowNLP(line)
            #调用snownlp中情感评分s.sentiments
            if s.sentiments > 0.6:
                res = '喜欢'
                res_list.append(1)
            elif s.sentiments < 0.4:
                res = '不喜欢'
                res_list.append(-1)
            else:
                res = '一般'
                res_list.append(0)
            sent_dict = {
                '情感分析结果': s.sentiments,
                '评价倾向': res,
                '商品评论': line.replace('\n', '')
            }
            sentiment_list.append(sent_dict)
            print(sent_dict)
        df = pd.DataFrame(sentiment_list)
        df.to_csv(f'{to_filename}.csv', index=None, encoding='utf-8',
                  index_label=None, mode='w')


def data_virtualization():
    '''分析结果可视化,以条形图为测试样例'''
    font = FontProperties(fname='/System/Library/Fonts/Supplemental/Songti.ttc', size=14)
    likes = len([i for i in res_list if i == 1])
    common = len([i for i in res_list if i == 0])
    unlikes = len([i for i in res_list if i == -1])

    plt.bar([1], [likes], label='喜欢')#(坐标,评论长度,名称)
    plt.bar([2], [common], label='一般')
    plt.bar([3], [unlikes], label='不喜欢')

    x=[1,2,3]
    label=['喜欢','一般','不喜欢']
    plt.xticks(x, label)

    plt.legend()#插入图例
    plt.xlabel('评价种类')
    plt.ylabel('评价数目')
    plt.title(u'商品评论情感分析结果-条形图', FontProperties=font)
    plt.savefig('fig.png')
    plt.show()
'''
def word_cloud_show():
    #将商品评论转为高频词汇的词云
    wl = word_cloud_creation('jd_comment.csv')
    wc = word_cloud_settings()
    word_cloud_implementation(wl, wc)
'''

def main():
     processed_data('processed_comment_data')#数据清洗
     #train()  # 训练正负向商品评论数据集

     test('jd_comment', 'result')

     print('数据可视化中...')
     data_virtualization()  # 数据可视化

     print('python程序运行结束。')

if __name__ == '__main__':
    main()

 

词云轮廓图

python 爬取京东指定商品评论并进行情感分析

商品评论词云

python 爬取京东指定商品评论并进行情感分析

情感分析结果可视化

python 爬取京东指定商品评论并进行情感分析

以上就是python 爬取京东指定商品评论并进行情感分析的详细内容,更多关于python 爬取京东评论并进行情感分析的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
跟老齐学Python之折腾一下目录
Oct 24 Python
从Python程序中访问Java类的简单示例
Apr 20 Python
python实现随机森林random forest的原理及方法
Dec 21 Python
Python用5行代码写一个自定义简单二维码
Oct 21 Python
Python格式化输出字符串方法小结【%与format】
Oct 29 Python
python爬虫URL重试机制的实现方法(python2.7以及python3.5)
Dec 18 Python
python实现维吉尼亚算法
Mar 20 Python
pytorch中的自定义数据处理详解
Jan 06 Python
python使用QQ邮箱实现自动发送邮件
Jun 22 Python
python 爬虫如何实现百度翻译
Nov 16 Python
使用bandit对目标python代码进行安全函数扫描的案例分析
Jan 27 Python
PyMongo 查询数据的实现
Jun 28 Python
python b站视频下载的五种版本
May 27 #Python
教你怎么用python selenium实现自动化测试
Python Django框架介绍之模板标签及模板的继承
May 27 #Python
python 算法题——快乐数的多种解法
May 27 #Python
用Python监控你的朋友都在浏览哪些网站?
Python图片处理之图片裁剪教程
用Python进行栅格数据的分区统计和批量提取
You might like
如何从一个php文件向另一个地址post数据,不用表单和隐藏的变量的
2007/03/06 PHP
织梦模板标记简介
2007/03/11 PHP
PHP警告Cannot use a scalar value as an array的解决方法
2012/01/11 PHP
探讨:如何通过stats命令分析Memcached的内部状态
2013/06/14 PHP
Javascript 网页水印(非图片水印)实现代码
2010/03/01 Javascript
Extjs EditorGridPanel中ComboBox列的显示问题
2011/07/04 Javascript
HTML Color Picker(js拾色器效果)
2013/08/27 Javascript
使用CSS和jQuery模拟select并附提交后取得数据的代码
2013/10/18 Javascript
jquery获取tr并更改tr内容示例代码
2014/02/13 Javascript
jquery实现在页面加载完毕后获取图片高度或宽度
2014/06/16 Javascript
javascript中bind函数的作用实例介绍
2014/09/28 Javascript
学习JavaScript设计模式之装饰者模式
2016/01/19 Javascript
jquery购物车结算功能实现方法
2020/10/29 Javascript
jQuery插件zTree实现单独选中根节点中第一个节点示例
2017/03/08 Javascript
vue组件实现文字居中对齐的方法
2017/08/23 Javascript
js自定义trim函数实现删除两端空格功能
2018/02/09 Javascript
seajs下require书写约定实例分析
2018/05/16 Javascript
JS实现520 表白简单代码
2018/05/21 Javascript
Vue绑定内联样式问题
2018/10/17 Javascript
js实现动态增加文件域表单功能
2018/10/22 Javascript
Vue 样式绑定的实现方法
2019/01/15 Javascript
countUp.js实现数字动态变化效果
2019/10/17 Javascript
js实现简单掷骰子小游戏
2019/10/24 Javascript
javascript设计模式 ? 职责链模式原理与用法实例分析
2020/04/16 Javascript
[41:13]完美世界DOTA2联赛PWL S2 Forest vs Rebirth 第一场 11.20
2020/11/20 DOTA
python轻松查到删除自己的微信好友
2016/01/10 Python
python微信好友数据分析详解
2018/11/19 Python
python在openstreetmap地图上绘制路线图的实现
2019/07/11 Python
python中单下划线(_)和双下划线(__)的特殊用法
2019/08/29 Python
详解BeautifulSoup获取特定标签下内容的方法
2020/12/07 Python
校园报刊亭创业计划书
2014/01/02 职场文书
研究生毕业鉴定
2014/01/29 职场文书
大学生作弊检讨书
2014/02/19 职场文书
2014年三万活动总结
2014/04/26 职场文书
2015年医生个人工作总结
2015/04/25 职场文书
理解深度学习之深度学习简介
2021/04/14 Python