python 爬取京东指定商品评论并进行情感分析


Posted in Python onMay 27, 2021

项目地址

https://github.com/DA1YAYUAN/JD-comments-sentiment-analysis

爬取京东商城中指定商品下的用户评论,对数据预处理后基于SnowNLP的sentiment模块对文本进行情感分析。

运行环境

  • Mac OS X
  • Python3.7 requirements.txt
  • Pycharm

运行方法

数据爬取(jd.comment.py)

  1. 启动jd_comment.py,建议修改jd_comment.py中变量user-agent为自己浏览器用户代理
  2. 输入京东商品完整URL
  3. 得到京东评论词云,存放于jd_ciyun.jpg(词云轮廓形状存放于jdicon.jpg)
  4. 得到京东评论数据,存放于jd_comment.csv
import os
import time
import json
import random
import csv
import re

import jieba
import requests
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
from wordcloud import WordCloud

# 词云形状图片
WC_MASK_IMG = 'jdicon.jpg'
# 评论数据保存文件
COMMENT_FILE_PATH = 'jd_comment.txt'
# 词云字体
WC_FONT_PATH = '/Library/Fonts/Songti.ttc'


def spider_comment(page=0, key=0):
    """
    爬取京东指定页的评价数据
    :param page: 爬取第几,默认值为0
    """

    url = 'https://club.jd.com/comment/productPageComments.action?callback=fetchJSON_comment98vv4646&productId=' + key + '' \
          '&score=0&sortType=5&page=%s&pageSize=10&isShadowSku=0&fold=1' % page
    kv = {'user-agent': 'Mozilla/5.0', 'Referer': 'https://item.jd.com/'+ key + '.html'}#原本key不输入值,默认为《三体》

    try:
        r = requests.get(url, headers=kv)
        r.raise_for_status()
    except:
        print('爬取失败')
    # 截取json数据字符串
    r_json_str = r.text[26:-2]
    # 字符串转json对象
    r_json_obj = json.loads(r_json_str)
    # 获取评价列表数据
    r_json_comments = r_json_obj['comments']
    # 遍历评论对象列表
    for r_json_comment in r_json_comments:
        # 以追加模式换行写入每条评价
        with open(COMMENT_FILE_PATH, 'a+') as file:
            file.write(r_json_comment['content'] + '\n')
        # 打印评论对象中的评论内容
        print(r_json_comment['content'])


def batch_spider_comment():
    """
        批量爬取某东评价
        """
    # 写入数据前先清空之前的数据
    if os.path.exists(COMMENT_FILE_PATH):
        os.remove(COMMENT_FILE_PATH)
    key = input("Please enter the address:")
    key = re.sub("\D","",key)
    #通过range来设定爬取的页面数
    for i in range(10):
        spider_comment(i,key)
        # 模拟用户浏览,设置一个爬虫间隔,防止ip被封
        time.sleep(random.random() * 5)


def cut_word():
    """
    对数据分词
    :return: 分词后的数据
    """
    with open(COMMENT_FILE_PATH) as file:
        comment_txt = file.read()
        wordlist = jieba.cut(comment_txt, cut_all=False)#精确模式
        wl = " ".join(wordlist)
        print(wl)
        return wl


def create_word_cloud():
    """44144127306
    生成词云
    :return:
    """
    # 设置词云形状图片
    wc_mask = np.array(Image.open(WC_MASK_IMG))
    # 设置词云的一些配置,如:字体,背景色,词云形状,大小
    wc = WordCloud(background_color="white", max_words=2000, mask=wc_mask, scale=4,
                   max_font_size=50, random_state=42, font_path=WC_FONT_PATH)
    # 生成词云
    wc.generate(cut_word())
    # 在只设置mask的情况下,你将会得到一个拥有图片形状的词云
    plt.imshow(wc, interpolation="bilinear")
    plt.axis("off")
    plt.figure()
    plt.show()
    wc.to_file("jd_ciyun.jpg")


def txt_change_to_csv():
    with open('jd_comment.csv', 'w+', encoding="utf8", newline='')as c:
        writer_csv = csv.writer(c, dialect="excel")
        with open("jd_comment.txt", 'r', encoding='utf8')as f:
            # print(f.readlines())
            for line in f.readlines():
                # 去掉str左右端的空格并以空格分割成list
                line_list = line.strip('\n').split(',')
                print(line_list)
                writer_csv.writerow(line_list)

if __name__ == '__main__':
    # 爬取数据
    batch_spider_comment()

    #转换数据
    txt_change_to_csv()

    # 生成词云
    create_word_cloud()

模型训练(train.py)

  1. 准备正负语料集online_shopping_10_cats.csv,分别存入negative.txt和positive.txt
  2. 启动train.py,新建文件sentiment.marshal,存入训练后的模型
  3. 找到外部库中snownlp中sentiment模块,将训练得到的sentiment.marshal.3文件覆盖sentiment模块中自带的sentiment.marshal.3
# -*-coding:utf-8-*-

def train():
    from snownlp import sentiment
    print("开始训练数据集...")
    sentiment.train('negative.txt', 'positive.txt')#自己准备数据集
    sentiment.save('sentiment.marshal')#保存训练模型
    #python2保存的是sentiment.marshal;python3保存的是sentiment.marshal.3
    "训练完成后,将训练完的模型,替换sentiment中的模型"

def main():
    train()  # 训练正负向商品评论数据集
    print("数据集训练完成!")

if __name__ == '__main__':
    main()

情感分析(sentiment.analysis.py)

  1. 启动sentiment.analysis.py
  2. 开始对jd_comment.csv中评论进行数据处理,处理后文件存入processed_comment_data.csv
  3. sentiment模块根据sentiment.marshal.3对评论进行情感评分,评分结果存入result.csv
  4. 评分结果可视化,生成文件fig.png
from snownlp import sentiment
import pandas as pd
import snownlp
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties

#from word_cloud import word_cloud_creation, word_cloud_implementation, word_cloud_settings

def read_csv():
    '''读取商品评论数据文件'''
    comment_data = pd.read_csv('jd_comment.csv', encoding='utf-8',
                               sep='\n', index_col=None)
    #返回评论作为参数
    return comment_data


def clean_data(data):
    '''数据清洗'''
    df = data.dropna()  # 消除缺失数据 NaN为缺失数据
    df = pd.DataFrame(df.iloc[:, 0].unique())  # 数据去重
    return df
    # print('数据清洗后:', len(df))


def clean_repeat_word(raw_str, reverse=False):
    '''去除评论中的重复使用的词汇'''
    if reverse:
        raw_str = raw_str[::-1]
    res_str = ''
    for i in raw_str:
        if i not in res_str:
            res_str += i
    if reverse:
        res_str = res_str[::-1]
    return res_str


def processed_data(filename):
    '''清洗完毕的数据,并保存'''
    df = clean_data(read_csv())#数据清洗
    ser1 = df.iloc[:, 0].apply(clean_repeat_word)#去除重复词汇
    df2 = pd.DataFrame(ser1.apply(clean_repeat_word, reverse=True))
    df2.to_csv(f'{filename}.csv', encoding='utf-8', index_label=None, index=None)


def train():
    '''训练正向和负向情感数据集,并保存训练模型'''
    sentiment.train('negative.txt', 'positive.txt')
    sentiment.save('seg.marshal')#python2保存的是sentiment.marshal;python3保存的是sentiment.marshal.3


sentiment_list = []

res_list = []


def test(filename, to_filename):
    '''商品评论-情感分析-测试'''
    with open(f'{filename}.csv', 'r', encoding='utf-8') as fr:
        for line in fr.readlines():
            s = snownlp.SnowNLP(line)
            #调用snownlp中情感评分s.sentiments
            if s.sentiments > 0.6:
                res = '喜欢'
                res_list.append(1)
            elif s.sentiments < 0.4:
                res = '不喜欢'
                res_list.append(-1)
            else:
                res = '一般'
                res_list.append(0)
            sent_dict = {
                '情感分析结果': s.sentiments,
                '评价倾向': res,
                '商品评论': line.replace('\n', '')
            }
            sentiment_list.append(sent_dict)
            print(sent_dict)
        df = pd.DataFrame(sentiment_list)
        df.to_csv(f'{to_filename}.csv', index=None, encoding='utf-8',
                  index_label=None, mode='w')


def data_virtualization():
    '''分析结果可视化,以条形图为测试样例'''
    font = FontProperties(fname='/System/Library/Fonts/Supplemental/Songti.ttc', size=14)
    likes = len([i for i in res_list if i == 1])
    common = len([i for i in res_list if i == 0])
    unlikes = len([i for i in res_list if i == -1])

    plt.bar([1], [likes], label='喜欢')#(坐标,评论长度,名称)
    plt.bar([2], [common], label='一般')
    plt.bar([3], [unlikes], label='不喜欢')

    x=[1,2,3]
    label=['喜欢','一般','不喜欢']
    plt.xticks(x, label)

    plt.legend()#插入图例
    plt.xlabel('评价种类')
    plt.ylabel('评价数目')
    plt.title(u'商品评论情感分析结果-条形图', FontProperties=font)
    plt.savefig('fig.png')
    plt.show()
'''
def word_cloud_show():
    #将商品评论转为高频词汇的词云
    wl = word_cloud_creation('jd_comment.csv')
    wc = word_cloud_settings()
    word_cloud_implementation(wl, wc)
'''

def main():
     processed_data('processed_comment_data')#数据清洗
     #train()  # 训练正负向商品评论数据集

     test('jd_comment', 'result')

     print('数据可视化中...')
     data_virtualization()  # 数据可视化

     print('python程序运行结束。')

if __name__ == '__main__':
    main()

 

词云轮廓图

python 爬取京东指定商品评论并进行情感分析

商品评论词云

python 爬取京东指定商品评论并进行情感分析

情感分析结果可视化

python 爬取京东指定商品评论并进行情感分析

以上就是python 爬取京东指定商品评论并进行情感分析的详细内容,更多关于python 爬取京东评论并进行情感分析的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
Python3实现Web网页图片下载
Jan 28 Python
Python将多个list合并为1个list的方法
Jun 27 Python
python 产生token及token验证的方法
Dec 26 Python
python对文件目录的操作方法实例总结
Jun 24 Python
超简单的Python HTTP服务
Jul 22 Python
如何基于python测量代码运行时间
Dec 25 Python
OpenCV python sklearn随机超参数搜索的实现
Jan 17 Python
python GUI库图形界面开发之PyQt5下拉列表框控件QComboBox详细使用方法与实例
Feb 27 Python
Python3 selenium 实现QQ群接龙自动化功能
Apr 17 Python
django序列化时使用外键的真实值操作
Jul 15 Python
Python图像处理之图像拼接
Apr 28 Python
pytorch分类模型绘制混淆矩阵以及可视化详解
Apr 07 Python
python b站视频下载的五种版本
May 27 #Python
教你怎么用python selenium实现自动化测试
Python Django框架介绍之模板标签及模板的继承
May 27 #Python
python 算法题——快乐数的多种解法
May 27 #Python
用Python监控你的朋友都在浏览哪些网站?
Python图片处理之图片裁剪教程
用Python进行栅格数据的分区统计和批量提取
You might like
分享PHP入门的学习方法
2007/01/02 PHP
mysql时区问题
2008/03/26 PHP
Ajax PHP简单入门教程代码
2008/04/25 PHP
PHP动态规划解决0-1背包问题实例分析
2015/03/23 PHP
PHP多个图片压缩成ZIP的方法
2020/08/18 PHP
用javascript控制iframe滚动的代码
2007/04/10 Javascript
jQuery实现用户注册的表单验证示例
2013/08/28 Javascript
js与jQuery 获取父窗、子窗的iframe
2013/12/20 Javascript
Javascript 按位与运算符 (&amp;)使用介绍
2014/02/04 Javascript
Javascript学习笔记之 函数篇(二) : this 的工作机制
2014/06/24 Javascript
Firefox下无法正常显示年份的解决方法
2014/09/04 Javascript
node.js中的http.get方法使用说明
2014/12/14 Javascript
JavaScript基本语法学习教程
2016/01/14 Javascript
BootStrap下拉菜单和滚动监听插件实现代码
2016/09/26 Javascript
prototype与__proto__区别详细介绍
2017/01/09 Javascript
JS中from 表单序列化提交的代码
2017/01/20 Javascript
ajax分页效果(bootstrap模态框)
2017/01/23 Javascript
a标签置灰不可点击的实现方法
2017/02/06 Javascript
Angularjs中的ui-bootstrap的使用教程
2017/02/19 Javascript
vue 之 .sync 修饰符示例详解
2018/04/21 Javascript
详解开发react应用最好用的脚手架 create-react-app
2018/04/24 Javascript
微信小程序开发常见问题及解决方案
2019/07/11 Javascript
vue使用exif获取图片经纬度的示例代码
2020/12/11 Vue.js
Python下载网络文本数据到本地内存的四种实现方法示例
2018/02/05 Python
pytorch查看torch.Tensor和model是否在CUDA上的实例
2020/01/03 Python
python 对任意数据和曲线进行拟合并求出函数表达式的三种解决方案
2020/02/18 Python
Python使用内置函数setattr设置对象的属性值
2020/10/16 Python
BONIA官方网站:国际奢侈品牌和皮革专家
2016/11/27 全球购物
如何用Lucene索引数据库
2016/02/23 面试题
感恩寄语大全
2014/04/11 职场文书
大专学生求职自荐信
2014/07/06 职场文书
大学生考试作弊检讨书1000字
2014/10/14 职场文书
2015年房地产个人工作总结
2015/05/26 职场文书
保险公司岗前培训工作总结
2015/10/24 职场文书
利用python做数据拟合详情
2021/11/17 Python
苹果的回收机器人可以通过拆解iPhone获取大量的金和铜并外公布了环境保护最新进展
2022/04/21 数码科技