python 基于DDT实现数据驱动测试


Posted in Python onFebruary 18, 2021

简单介绍

​ DDT(Date Driver Test),所谓数据驱动测试,简单来说就是由数据的改变从而驱动自动化测试的执行,最终引起测试结果的改变。通过使用数据驱动测试的方法,可以在需要验证多组数据测试场景中,使用外部数据源实现对输入输出与期望值的参数化,避免在测试中使用硬编码的数据,也就是测试数据和用例脚本代码分离。

​ DDT它其实就是一个装饰器,它会根据你传递进来的数据来决定要生成几个测试用例。

​ ?使用的意义

1.代码复用率高:一个测试逻辑只需要写一次,可以多条测试数据复用,同时提高测试脚本的编写效率。

2.异常排查效率高:根据测试数据,每条数据生成一条测试用例,用例相互分离,一条失败的情况下不会影响其他测试用例。

3.代码可维护性高:简洁明了的测试框架,利于其他同事阅读,提高代码的可维护性。

安装及导入

​ cmd命令行执行安装:pip install ddt

​ 直接导入到模块:import ddt,或导入具体的装饰器:from ddt import ddt, data, unpack

使用详解

​ ?三个要点:

  • @ddt:装饰测试类
  • @data:装饰测试用例
  • @unpack:装饰测试用例

​ 要使用ddt的前提是要有测试用例类,然后用@ddt去装饰测试用例类,用@data(测试数据)去装饰测试用例,如下登录接口例子:

from ddt import ddt, data
from common.read_excel import ReadExcel
from common.my_logger import log


@ddt # 装饰登录测试用例类,声明使用ddt
class LoginTestCase(unittest.TestCase):
  
  excel = ReadExcel("cases.xlsx", "login")
  cases = excel.read_data()
  
  @data(*cases)	# 装饰测试用例
  def test_login(self, case):
    case_data = eval(case["data"])
    expected = eval(case["expected"])
    case_id = case["case_id"]
    result = login_check(*case_data)
    response = self.http.send(url=url, method=method, json=data, headers=headers)
    result = response.json()
    try:
      self.assertEqual(expected["code"], result["code"])
      self.assertEqual((expected["msg"]), result["msg"])
    except AssertionError as e:
      log.info("用例:{}--->执行未通过".format(case["title"]))
      print("预期结果:{}".format(expected))
      print("实际结果:{}".format(result))
      raise e
    else:
      log.info("用例:{}--->执行通过".format(case["title"]))


if __name__ == '__main__':
  unittest.main()

@ddt它做的事情其实就等同于这句代码:LoginTestCase = ddt(LoginTestCase),把具体的类名传给ddt,告诉ddt是这个测试用例类要使用数据驱动。

@data做的事情就是把测试数据作为一个参数传递给测试用例,一个数据对应生成一条测试用例,如果data里面有多个数据那么就对应生成多条测试用例。如果data里放的类似是元组、列表等这样的序列类型的数据,data会把他们当成是一个整体,即一个测试数据。

​ 如果想一次传递多个参数给测试用例,需要自行在脚本中对数据进行分解或者使用@unpack分解数据。如上例子中的测试用例,只使用了一个参数,但这个参数case是一个字典,字典中已经包含多个数据,直接用key获取对应的值即可。@unpack则是可以把序列类型的数据拆分为多个,以多个参数传给测试用例,但测试用例也需要定义同等数量的参数来接收。

​ 上面例子的测试数据cases来源是使用了openpyxl来读取excel中的测试数据的,关于openpyxl可以看我这个系列的另外一篇随笔。这里直接说明cases其实就是像下面这样的一个列表:

cases = [{'case_id': 1, 'title': '正常登录', 'data': '("test", "Test1234")', 'expected': '{"code": 0, "msg": "登录成功"}'}, {'case_id': 2, 'title': '密码错误', 'data': '("test", "123")', 'expected': '{"code": 1, "msg": "账号或密码不正确"}'}, {'case_id': 3, 'title': '账户名错误', 'data': '("test11", "Test1234")', 'expected': '{"code": 1, "msg": "账号或密码不正确"}'}]

# *解包后,一个字典就是一个测试用例数据
# 如第一个字典:{'case_id': 1, 'title': '正常登录', 'data': '("test", "Test1234")', 'expected': '{"code": 0, "msg": "登录成功"}'}

​ 通过*解包,它的数据就是3个字典,每次给测试用例传入1个字典,而这个字典里就存放了一条完整的登录接口测试用例的测试数据,包括用例id、用例标题、测试的账号密码、期望返回的结果。

​ ?小结:

  • @data(a,b):a和b各运行一次用例
  • @data(*(a,b):a和b各运行一次用例,使用*解包,相当于@data(a,b)
  • @data([a,d],[c,d])

                  如果没有@unpack[a,b]、[c,d]都会被当成一个参数传入用例,即用[a,b]运行一次,用[c,d]运行一次;
                  如果有@unpack,[a,b]会被分解开,一次传递两个参数给用例,用例需要定义两个参数接收
                  @unpack可适用元组、列表或字典,但当传入的是字典时,字典的key和用例定义的参数名需要保持一致

​ 关键代码:@file_data,传递文件(json/yaml)

扩展

​ 关键代码:@file_data,传递文件(json/yaml)

# 传递json
"""
json文件数据
{
	"token":123456,
	"actionName": "api.login",
	"content": {
		"user": "miki",
		"pwd": "Test123"
	}
}
"""
"""
yaml文件
test_list:
 - 11
 - 22
 - 12

sorted_list: [ 11, 12, 22 ]
"""
from ddt import *


@ddt	# 声明使用ddt
class TestFile(unittest.TestCase):

  @file_data('D:/test/test.json')
  def test_json(self, json_data):
    print(json_data)
    
  @file_data('D:/test/test.yaml')
  def test_yaml(self, yaml_data):
    print("yaml", yaml_data)

以上就是python 基于DDT实现数据驱动测试的详细内容,更多关于python 实现数据驱动测试的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
win7安装python生成随机数代码分享
Dec 27 Python
跟老齐学Python之赋值,简单也不简单
Sep 24 Python
Django框架中render_to_response()函数的使用方法
Jul 16 Python
python脚本设置超时机制系统时间的方法
Feb 21 Python
利用matplotlib+numpy绘制多种绘图的方法实例
May 03 Python
简单谈谈Python的pycurl模块
Apr 07 Python
用python实现将数组元素按从小到大的顺序排列方法
Jul 02 Python
python实现关闭第三方窗口的方法
Jun 28 Python
python腾讯语音合成实现过程解析
Aug 01 Python
pytorch中torch.max和Tensor.view函数用法详解
Jan 03 Python
Python+unittest+requests+excel实现接口自动化测试框架
Dec 23 Python
Python try except else使用详解
Jan 12 Python
详解解决jupyter不能使用pytorch的问题
Feb 18 #Python
python 使用openpyxl读取excel数据
Feb 18 #Python
Python用SSH连接到网络设备
Feb 18 #Python
python 实现IP子网计算
Feb 18 #Python
详解python3 GUI刷屏器(附源码)
Feb 18 #Python
基于Python-turtle库绘制路飞的草帽骷髅旗、美国队长的盾牌、高达的源码
Feb 18 #Python
Python如何telnet到网络设备
Feb 18 #Python
You might like
php结合表单实现一些简单功能的例子
2011/06/04 PHP
PHP中file_exists与is_file,is_dir的区别介绍
2012/09/12 PHP
PHP实现打包zip并下载功能
2018/06/12 PHP
在 Laravel 中动态隐藏 API 字段的方法
2019/10/25 PHP
php慢查询日志和错误日志使用详解
2021/02/27 PHP
很可爱的输入框
2008/08/03 Javascript
一个js写的日历(代码部分网摘)
2009/09/20 Javascript
JavaScript 大数据相加的问题
2011/08/03 Javascript
Vuejs第十二篇之动态组件全面解析
2016/09/09 Javascript
JS限制条件补全问题实例分析
2016/12/16 Javascript
js实现打地鼠小游戏
2017/02/13 Javascript
详解在vue-cli项目中使用mockjs(请求数据删除数据)
2017/10/23 Javascript
jQuery实现的简单获取索引功能示例
2018/06/04 jQuery
vue-router 实现导航守卫(路由卫士)的实例代码
2018/09/02 Javascript
详解如何搭建mpvue框架搭配vant组件库的小程序项目
2019/05/16 Javascript
vue实现在线翻译功能
2019/09/27 Javascript
jQuery实现手风琴特效
2021/01/11 jQuery
[03:07]完美世界DOTA2联赛PWL DAY10 决赛集锦
2020/11/11 DOTA
9种python web 程序的部署方式小结
2014/06/30 Python
利用Python绘制数据的瀑布图的教程
2015/04/07 Python
Python使用base64模块进行二进制数据编码详解
2018/01/11 Python
5个很好的Python面试题问题答案及分析
2018/01/19 Python
Python实现简易版的Web服务器(推荐)
2018/01/29 Python
python 用lambda函数替换for循环的方法
2018/06/09 Python
基于腾讯云服务器部署微信小程序后台服务(Python+Django)
2019/05/08 Python
如何通过雪花算法用Python实现一个简单的发号器
2019/07/03 Python
Python绘制股票移动均线的实例
2019/08/24 Python
利用Python制作动态排名图的实现代码
2020/04/09 Python
Python自动化操作实现图例绘制
2020/07/09 Python
matplotlib常见函数之plt.rcParams、matshow的使用(坐标轴设置)
2021/01/05 Python
最耐用行李箱,一箱永流传:Briggs & Riley(全球终身保修)
2017/12/07 全球购物
澳大利亚拥有最好的家具和家居用品在线目的地:Nestz
2019/02/23 全球购物
叙述DBMS对数据控制功能有哪些
2016/06/12 面试题
在校生自我鉴定
2014/01/23 职场文书
学雷锋活动简报
2015/07/20 职场文书
科普 | 业余无线电知识-波段篇
2022/02/18 无线电