python实现梯度下降算法的实例详解


Posted in Python onAugust 17, 2020

python版本选择

这里选的python版本是2.7,因为我之前用python3试了几次,发现在画3d图的时候会报错,所以改用了2.7。

数据集选择

数据集我选了一个包含两个变量,三个参数的数据集,这样可以画出3d图形对结果进行验证。

部分函数总结

symbols()函数:首先要安装sympy库才可以使用。用法:

>>> x1 = symbols('x2')
>>> x1 + 1
x2 + 1

在这个例子中,x1和x2是不一样的,x2代表的是一个函数的变量,而x1代表的是python中的一个变量,它可以表示函数的变量,也可以表示其他的任何量,它替代x2进行函数的计算。实际使用的时候我们可以将x1,x2都命名为x,但是我们要知道他们俩的区别。
再看看这个例子:

>>> x = symbols('x')
>>> expr = x + 1
>>> x = 2
>>> print(expr)
x + 1

作为python变量的x被2这个数值覆盖了,所以它现在不再表示函数变量x,而expr依然是函数变量x+1的别名,所以结果依然是x+1。
subs()函数:既然普通的方法无法为函数变量赋值,那就肯定有函数来实现这个功能,用法:

>>> (1 + x*y).subs(x, pi)#一个参数时的用法
pi*y + 1
>>> (1 + x*y).subs({x:pi, y:2})#多个参数时的用法
1 + 2*pi

diff()函数:求偏导数,用法:result=diff(fun,x),这个就是求fun函数对x变量的偏导数,结果result也是一个变量,需要赋值才能得到准确结果。

代码实现:

from __future__ import division
from sympy import symbols, diff, expand
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

data = {'x1': [100, 50, 100, 100, 50, 80, 75, 65, 90, 90],
        'x2': [4, 3, 4, 2, 2, 2, 3, 4, 3, 2],
        'y': [9.3, 4.8, 8.9, 6.5, 4.2, 6.2, 7.4, 6.0, 7.6, 6.1]}#初始化数据集
theta0, theta1, theta2 = symbols('theta0 theta1 theta2', real=True)  # y=theta0+theta1*x1+theta2*x2,定义参数
costfuc = 0 * theta0
for i in range(10):
    costfuc += (theta0 + theta1 * data['x1'][i] + theta2 * data['x2'][i] - data['y'][i]) ** 2
costfuc /= 20#初始化代价函数
dtheta0 = diff(costfuc, theta0)
dtheta1 = diff(costfuc, theta1)
dtheta2 = diff(costfuc, theta2)

rtheta0 = 1
rtheta1 = 1
rtheta2 = 1#为参数赋初始值

costvalue = costfuc.subs({theta0: rtheta0, theta1: rtheta1, theta2: rtheta2})
newcostvalue = 0#用cost的值的变化程度来判断是否已经到最小值了
count = 0
alpha = 0.0001#设置学习率,一定要设置的比较小,否则无法到达最小值
while (costvalue - newcostvalue > 0.00001 or newcostvalue - costvalue > 0.00001) and count < 1000:
    count += 1
    costvalue = newcostvalue
    rtheta0 = rtheta0 - alpha * dtheta0.subs({theta0: rtheta0, theta1: rtheta1, theta2: rtheta2})
    rtheta1 = rtheta1 - alpha * dtheta1.subs({theta0: rtheta0, theta1: rtheta1, theta2: rtheta2})
    rtheta2 = rtheta2 - alpha * dtheta2.subs({theta0: rtheta0, theta1: rtheta1, theta2: rtheta2})
    newcostvalue = costfuc.subs({theta0: rtheta0, theta1: rtheta1, theta2: rtheta2})
rtheta0 = round(rtheta0, 4)
rtheta1 = round(rtheta1, 4)
rtheta2 = round(rtheta2, 4)#给结果保留4位小数,防止数值溢出
print(rtheta0, rtheta1, rtheta2)

fig = plt.figure()
ax = Axes3D(fig)
ax.scatter(data['x1'], data['x2'], data['y'])  # 绘制散点图
xx = np.arange(20, 100, 1)
yy = np.arange(1, 5, 0.05)
X, Y = np.meshgrid(xx, yy)
Z = X * rtheta1 + Y * rtheta2 + rtheta0
ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=plt.get_cmap('rainbow'))

plt.show()#绘制3d图进行验证

结果:

python实现梯度下降算法的实例详解

python实现梯度下降算法的实例详解

实例扩展:

'''
梯度下降算法
Batch Gradient Descent
Stochastic Gradient Descent SGD
'''
__author__ = 'epleone'
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import sys

# 使用随机数种子, 让每次的随机数生成相同,方便调试
# np.random.seed(111111111)


class GradientDescent(object):
 eps = 1.0e-8
 max_iter = 1000000 # 暂时不需要
 dim = 1
 func_args = [2.1, 2.7] # [w_0, .., w_dim, b]

 def __init__(self, func_arg=None, N=1000):
 self.data_num = N
 if func_arg is not None:
 self.FuncArgs = func_arg
 self._getData()

 def _getData(self):
 x = 20 * (np.random.rand(self.data_num, self.dim) - 0.5)
 b_1 = np.ones((self.data_num, 1), dtype=np.float)
 # x = np.concatenate((x, b_1), axis=1)
 self.x = np.concatenate((x, b_1), axis=1)

 def func(self, x):
 # noise太大的话, 梯度下降法失去作用
 noise = 0.01 * np.random.randn(self.data_num) + 0
 w = np.array(self.func_args)
 # y1 = w * self.x[0, ] # 直接相乘
 y = np.dot(self.x, w) # 矩阵乘法
 y += noise
 return y

 @property
 def FuncArgs(self):
 return self.func_args

 @FuncArgs.setter
 def FuncArgs(self, args):
 if not isinstance(args, list):
 raise Exception(
 'args is not list, it should be like [w_0, ..., w_dim, b]')
 if len(args) == 0:
 raise Exception('args is empty list!!')
 if len(args) == 1:
 args.append(0.0)
 self.func_args = args
 self.dim = len(args) - 1
 self._getData()

 @property
 def EPS(self):
 return self.eps

 @EPS.setter
 def EPS(self, value):
 if not isinstance(value, float) and not isinstance(value, int):
 raise Exception("The type of eps should be an float number")
 self.eps = value

 def plotFunc(self):
 # 一维画图
 if self.dim == 1:
 # x = np.sort(self.x, axis=0)
 x = self.x
 y = self.func(x)
 fig, ax = plt.subplots()
 ax.plot(x, y, 'o')
 ax.set(xlabel='x ', ylabel='y', title='Loss Curve')
 ax.grid()
 plt.show()
 # 二维画图
 if self.dim == 2:
 # x = np.sort(self.x, axis=0)
 x = self.x
 y = self.func(x)
 xs = x[:, 0]
 ys = x[:, 1]
 zs = y
 fig = plt.figure()
 ax = fig.add_subplot(111, projection='3d')
 ax.scatter(xs, ys, zs, c='r', marker='o')

 ax.set_xlabel('X Label')
 ax.set_ylabel('Y Label')
 ax.set_zlabel('Z Label')
 plt.show()
 else:
 # plt.axis('off')
 plt.text(
 0.5,
 0.5,
 "The dimension(x.dim > 2) \n is too high to draw",
 size=17,
 rotation=0.,
 ha="center",
 va="center",
 bbox=dict(
 boxstyle="round",
 ec=(1., 0.5, 0.5),
 fc=(1., 0.8, 0.8), ))
 plt.draw()
 plt.show()
 # print('The dimension(x.dim > 2) is too high to draw')

 # 梯度下降法只能求解凸函数
 def _gradient_descent(self, bs, lr, epoch):
 x = self.x
 # shuffle数据集没有必要
 # np.random.shuffle(x)
 y = self.func(x)
 w = np.ones((self.dim + 1, 1), dtype=float)
 for e in range(epoch):
 print('epoch:' + str(e), end=',')
 # 批量梯度下降,bs为1时 等价单样本梯度下降
 for i in range(0, self.data_num, bs):
 y_ = np.dot(x[i:i + bs], w)
 loss = y_ - y[i:i + bs].reshape(-1, 1)
 d = loss * x[i:i + bs]
 d = d.sum(axis=0) / bs
 d = lr * d
 d.shape = (-1, 1)
 w = w - d

 y_ = np.dot(self.x, w)
 loss_ = abs((y_ - y).sum())
 print('\tLoss = ' + str(loss_))
 print('拟合的结果为:', end=',')
 print(sum(w.tolist(), []))
 print()
 if loss_ < self.eps:
 print('The Gradient Descent algorithm has converged!!\n')
 break
 pass

 def __call__(self, bs=1, lr=0.1, epoch=10):
 if sys.version_info < (3, 4):
 raise RuntimeError('At least Python 3.4 is required')
 if not isinstance(bs, int) or not isinstance(epoch, int):
 raise Exception(
 "The type of BatchSize/Epoch should be an integer number")
 self._gradient_descent(bs, lr, epoch)
 pass

 pass


if __name__ == "__main__":
 if sys.version_info < (3, 4):
 raise RuntimeError('At least Python 3.4 is required')

 gd = GradientDescent([1.2, 1.4, 2.1, 4.5, 2.1])
 # gd = GradientDescent([1.2, 1.4, 2.1])
 print("要拟合的参数结果是: ")
 print(gd.FuncArgs)
 print("===================\n\n")
 # gd.EPS = 0.0
 gd.plotFunc()
 gd(10, 0.01)
 print("Finished!")

到此这篇关于python实现梯度下降算法的实例详解的文章就介绍到这了,更多相关教你用python实现梯度下降算法内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python单链表实现代码实例
Nov 21 Python
Python实现基于多线程、多用户的FTP服务器与客户端功能完整实例
Aug 18 Python
python 返回列表中某个值的索引方法
Nov 07 Python
Django管理员账号和密码忘记的完美解决方法
Dec 06 Python
Python使用requests提交HTTP表单的方法
Dec 26 Python
详解Python中is和==的区别
Mar 21 Python
在python下使用tensorflow判断是否存在文件夹的实例
Jun 10 Python
python实现socket+threading处理多连接的方法
Jul 23 Python
Django ImageFiled上传照片并显示的方法
Jul 28 Python
Python二次规划和线性规划使用实例
Dec 09 Python
python入门之基础语法学习笔记
Feb 08 Python
聊聊基于pytorch实现Resnet对本地数据集的训练问题
Mar 25 Python
python3.5的包存放的具体路径
Aug 16 #Python
python根据字典的键来删除元素的方法
Aug 16 #Python
python实现取余操作的简单实例
Aug 16 #Python
python属于哪种语言
Aug 16 #Python
python中sys模块是做什么用的
Aug 16 #Python
python3获取控制台输入的数据的具体实例
Aug 16 #Python
python在一个范围内取随机数的简单实例
Aug 16 #Python
You might like
php下利用curl判断远程文件是否存在的实现代码
2011/10/08 PHP
javascript针对DOM的应用分析(三)
2012/04/15 Javascript
jquery实现下拉菜单的二级联动利用json对象从DB取值显示联动
2014/03/27 Javascript
express的中间件cookieParser详解
2014/12/04 Javascript
jquery获取文档高度和窗口高度汇总
2016/01/25 Javascript
js实现字符全排列算法的简单方法
2017/05/01 Javascript
Js实现中国公民身份证号码有效性验证实例代码
2017/05/03 Javascript
Spring Boot/VUE中路由传递参数的实现代码
2018/03/02 Javascript
vue监听input标签的value值方法
2018/08/27 Javascript
js实现随机div颜色位置 类似满天星效果
2019/10/24 Javascript
利用Vue的v-for和v-bind实现列表颜色切换
2020/07/17 Javascript
Vue移动端项目实现使用手机预览调试操作
2020/07/18 Javascript
javascript实现数字时钟效果
2021/02/06 Javascript
[05:26]2014DOTA2西雅图国际邀请赛 iG战队巡礼
2014/07/07 DOTA
[42:32]完美世界DOTA2联赛循环赛 Magma vs PXG BO2第二场 10.28
2020/10/28 DOTA
[38:27]完美世界DOTA2联赛PWL S2 Forest vs FTD.C 第二场 11.26
2020/11/30 DOTA
Python标准库内置函数complex介绍
2014/11/25 Python
详细解析Python中__init__()方法的高级应用
2015/05/11 Python
Python读取和处理文件后缀为.sqlite的数据文件(实例讲解)
2017/06/27 Python
python re模块的高级用法详解
2018/06/06 Python
详解程序意外中断自动重启shell脚本(以Python为例)
2019/07/26 Python
python基础教程之while循环
2019/08/14 Python
Python3常用内置方法代码实例
2019/11/18 Python
Python实现非正太分布的异常值检测方式
2019/12/09 Python
使用canvas压缩图片上传的方法示例
2020/02/07 HTML / CSS
英国标准协会商店:BSI Shop
2019/02/25 全球购物
建筑学推荐信
2013/11/03 职场文书
简历中个人自我评价范文
2013/12/26 职场文书
大学毕业感言
2014/01/10 职场文书
员工工作表扬信范文
2014/01/13 职场文书
数控机床专业自荐信
2014/05/19 职场文书
十佳党员事迹材料
2014/08/28 职场文书
组织生活会发言材料
2014/12/15 职场文书
导游欢迎词范文
2015/01/23 职场文书
学习经验交流会总结
2015/11/02 职场文书
外出考察学习心得体会
2016/01/18 职场文书