PyTorch中的C++扩展实现


Posted in Python onApril 02, 2020

今天要聊聊用 PyTorch 进行 C++ 扩展。

在正式开始前,我们需要了解 PyTorch 如何自定义module。这其中,最常见的就是在 python 中继承torch.nn.Module,用 PyTorch 中已有的 operator 来组装成自己的模块。这种方式实现简单,但是,计算效率却未必最佳,另外,如果我们想实现的功能过于复杂,可能 PyTorch 中那些已有的函数也没法满足我们的要求。这时,用 C、C++、CUDA 来扩展 PyTorch 的模块就是最佳的选择了。

由于目前市面上大部分深度学习系统(TensorFlow、PyTorch 等)都是基于 C、C++ 构建的后端,因此这些系统基本都存在 C、C++ 的扩展接口。PyTorch 是基于 Torch 构建的,而 Torch 底层采用的是 C 语言,因此 PyTorch 天生就和 C 兼容,因此用 C 来扩展 PyTorch 并非难事。而随着 PyTorch1.0 的发布,官方已经开始考虑将 PyTorch 的底层代码用 caffe2 替换,因此他们也在逐步重构 ATen,后者是目前 PyTorch 使用的 C++ 扩展库。总的来说,C++ 是未来的趋势。至于 CUDA,这是几乎所有深度学习系统在构建之初就采用的工具,因此 CUDA 的扩展接口是标配。

本文用一个简单的例子,梳理一下进行 C++ 扩展的步骤,至于一些具体的实现,不做深入探讨。

PyTorch的C、C++、CUDA扩展

关于 PyTorch 的 C 扩展,可以参考官方教程或者这篇博文,其操作并不难,无非是借助原先 Torch 提供的<TH/TH.h><THC/THC.h>等接口,再利用 PyTorch 中提供的torch.util.ffi模块进行扩展。需要注意的是,随着 PyTorch 版本升级,这种做法在新版本的 PyTorch 中可能会失效。

本文主要介绍 C++(未来可能加上 CUDA)的扩展方法。

C++扩展

首先,介绍一下基本流程。在 PyTorch 中扩展 C++/CUDA 主要分为几步:

  1. 安装好 pybind11 模块(通过 pip 或者 conda 等安装),这个模块会负责 python 和 C++ 之间的绑定;
  2. 用 C++ 写好自定义层的功能,包括前向传播forward和反向传播backward;
  3. 写好 setup.py,并用 python 提供的setuptools来编译并加载 C++ 代码。
  4. 编译安装,在 python 中调用 C++ 扩展接口。

接下来,我们就用一个简单的例子(z=2x+y)来演示这几个步骤。

第一步

安装 pybind11 比较简单,直接略过。我们先写好 C++ 相关的文件:

头文件 test.h

#include <torch/extension.h>
#include <vector>

// 前向传播
torch::Tensor Test_forward_cpu(const torch::Tensor& inputA,
              const torch::Tensor& inputB);
// 反向传播
std::vector<torch::Tensor> Test_backward_cpu(const torch::Tensor& gradOutput);

注意,这里引用的<torch/extension.h>头文件至关重要,它主要包括三个重要模块:

  • pybind11,用于 C++ 和 python 交互;
  • ATen,包含 Tensor 等重要的函数和类;
  • 一些辅助的头文件,用于实现 ATen 和 pybind11 之间的交互。

源文件 test.cpp 如下:

#include "test.h"

// 前向传播,两个 Tensor 相加。这里只关注 C++ 扩展的流程,具体实现不深入探讨。
torch::Tensor Test_forward_cpu(const torch::Tensor& x,
              const torch::Tensor& y) {
  AT_ASSERTM(x.sizes() == y.sizes(), "x must be the same size as y");
  torch::Tensor z = torch::zeros(x.sizes());
  z = 2 * x + y;
  return z;
}

// 反向传播
// 在这个例子中,z对x的导数是2,z对y的导数是1。
// 至于这个backward函数的接口(参数,返回值)为何要这样设计,后面会讲。
std::vector<torch::Tensor> Test_backward_cpu(const torch::Tensor& gradOutput) {
  torch::Tensor gradOutputX = 2 * gradOutput * torch::ones(gradOutput.sizes());
  torch::Tensor gradOutputY = gradOutput * torch::ones(gradOutput.sizes());
  return {gradOutputX, gradOutputY};
}

// pybind11 绑定
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
 m.def("forward", &Test_forward_cpu, "TEST forward");
 m.def("backward", &Test_backward_cpu, "TEST backward");
}

第二步

新建一个编译安装的配置文件 setup.py,文件目录安排如下:

└── csrc
  ├── cpu
  │  ├── test.cpp
  │  └── test.h
  └── setup.py

以下是 setup.py 中的内容:

from setuptools import setup
import os
import glob
from torch.utils.cpp_extension import BuildExtension, CppExtension

# 头文件目录
include_dirs = os.path.dirname(os.path.abspath(__file__))
# 源代码目录
source_cpu = glob.glob(os.path.join(include_dirs, 'cpu', '*.cpp'))

setup(
  name='test_cpp', # 模块名称,需要在python中调用
  version="0.1",
  ext_modules=[
    CppExtension('test_cpp', sources=source_cpu, include_dirs=[include_dirs]),
  ],
  cmdclass={
    'build_ext': BuildExtension
  }
)

注意,这个 C++ 扩展被命名为test_cpp,意思是说,在 python 中可以通过test_cpp模块来调用 C++ 函数。

第三步

在 cpu 这个目录下,执行下面的命令编译安装 C++ 代码:

python setup.py install

之后,可以看到一堆输出,该 C++ 模块会被安装在 python 的 site-packages 中。

完成上面几步后,就可以在 python 中调用 C++ 代码了。在 PyTorch 中,按照惯例需要先把 C++ 中的前向传播和反向传播封装成一个函数op(以下代码放在 test.py 文件中):

from torch.autograd import Function

import test_cpp

class TestFunction(Function):

  @staticmethod
  def forward(ctx, x, y):
    return test_cpp.forward(x, y)

  @staticmethod
  def backward(ctx, gradOutput):
    gradX, gradY = test_cpp.backward(gradOutput)
    return gradX, gradY

这样一来,我们相当于把 C++ 扩展的函数嵌入到 PyTorch 自己的框架内。

我查看了这个Function类的代码,发现是个挺有意思的东西:

class Function(with_metaclass(FunctionMeta, _C._FunctionBase, _ContextMethodMixin, _HookMixin)):
 
  ...

  @staticmethod
  def forward(ctx, *args, **kwargs):
    r"""Performs the operation.

    This function is to be overridden by all subclasses.

    It must accept a context ctx as the first argument, followed by any
    number of arguments (tensors or other types).

    The context can be used to store tensors that can be then retrieved
    during the backward pass.
    """
    raise NotImplementedError

  @staticmethod
  def backward(ctx, *grad_outputs):
    r"""Defines a formula for differentiating the operation.

    This function is to be overridden by all subclasses.

    It must accept a context :attr:`ctx` as the first argument, followed by
    as many outputs did :func:`forward` return, and it should return as many
    tensors, as there were inputs to :func:`forward`. Each argument is the
    gradient w.r.t the given output, and each returned value should be the
    gradient w.r.t. the corresponding input.

    The context can be used to retrieve tensors saved during the forward
    pass. It also has an attribute :attr:`ctx.needs_input_grad` as a tuple
    of booleans representing whether each input needs gradient. E.g.,
    :func:`backward` will have ``ctx.needs_input_grad[0] = True`` if the
    first input to :func:`forward` needs gradient computated w.r.t. the
    output.
    """
    raise NotImplementedError

这里需要注意一下backward的实现规则。该接口包含两个参数:ctx是一个辅助的环境变量,grad_outputs则是来自前一层网络的梯度列表,而且这个梯度列表的数量与forward函数返回的参数数量相同,这也符合链式法则的原理,因为链式法则就需要把前一层中所有相关的梯度与当前层进行相乘或相加。同时,backward需要返回forward中每个输入参数的梯度,如果forward中包括 n 个参数,就需要一一返回 n 个梯度。所以,在上面这个例子中,我们的backward函数接收一个参数作为输入(forward只输出一个变量),并返回两个梯度(forward接收上一层两个输入变量)。

定义完Function后,就可以在Module中使用这个自定义op了:

import torch

class Test(torch.nn.Module):

  def __init__(self):
    super(Test, self).__init__()

  def forward(self, inputA, inputB):
    return TestFunction.apply(inputA, inputB)

现在,我们的文件目录变成:

├── csrc
│  ├── cpu
│  │  ├── test.cpp
│  │  └── test.h
│  └── setup.py
└── test.py

之后,我们就可以将 test.py 当作一般的 PyTorch 模块进行调用了。

测试

下面,我们测试一下前向传播和反向传播:

import torch
from torch.autograd import Variable

from test import Test

x = Variable(torch.Tensor([1,2,3]), requires_grad=True)
y = Variable(torch.Tensor([4,5,6]), requires_grad=True)
test = Test()
z = test(x, y)
z.sum().backward()
print('x: ', x)
print('y: ', y)
print('z: ', z)
print('x.grad: ', x.grad)
print('y.grad: ', y.grad)

输出如下:

x:  tensor([1., 2., 3.], requires_grad=True)
y:  tensor([4., 5., 6.], requires_grad=True)
z:  tensor([ 6.,  9., 12.], grad_fn=<TestFunctionBackward>)
x.grad:  tensor([2., 2., 2.])
y.grad:  tensor([1., 1., 1.])

可以看出,前向传播满足 z=2x+y,而反向传播的结果也在意料之中。

CUDA扩展

虽然 C++ 写的代码可以直接跑在 GPU 上,但它的性能还是比不上直接用 CUDA 编写的代码,毕竟 ATen 没法并不知道如何去优化算法的性能。不过,由于我对 CUDA 仍一窍不通,因此这一步只能暂时略过,留待之后补充~?濉??/p>

参考

CUSTOM C EXTENSIONS FOR PYTORCH
CUSTOM C++ AND CUDA EXTENSIONS
Pytorch拓展进阶(一):Pytorch结合C以及Cuda语言
Pytorch拓展进阶(二):Pytorch结合C++以及Cuda拓展

到此这篇关于PyTorch中的C++扩展实现的文章就介绍到这了,更多相关PyTorch C++扩展 内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
初学Python实用技巧两则
Aug 29 Python
python清除指定目录内所有文件中script的方法
Jun 30 Python
Python实现批量将word转html并将html内容发布至网站的方法
Jul 14 Python
关于python pyqt5安装失败问题的解决方法
Aug 08 Python
python读取和保存视频文件
Apr 16 Python
Python 内置函数进制转换的用法(十进制转二进制、八进制、十六进制)
Apr 30 Python
django 修改server端口号的方法
May 14 Python
python logging模块书写日志以及日志分割详解
Jul 22 Python
python [:3] 实现提取数组中的数
Nov 27 Python
python接口自动化如何封装获取常量的类
Dec 24 Python
python如何提取英语pdf内容并翻译
Mar 03 Python
python删除csv文件的行列
Apr 06 Python
python实现将列表中各个值快速赋值给多个变量
Apr 02 #Python
Python运行提示缺少模块问题解决方案
Apr 02 #Python
Pycharm配置PyQt5环境的教程
Apr 02 #Python
Python无头爬虫下载文件的实现
Apr 02 #Python
linux 下selenium chrome使用详解
Apr 02 #Python
Python HTTP下载文件并显示下载进度条功能的实现
Apr 02 #Python
python实现将range()函数生成的数字存储在一个列表中
Apr 02 #Python
You might like
PHP.MVC的模板标签系统(四)
2006/09/05 PHP
在任意字符集下正常显示网页的方法二(续)
2007/04/01 PHP
去除php注释和去除空格函数分享
2014/03/13 PHP
Symfony2联合查询实现方法
2016/03/18 PHP
PHP实现通过URL提取根域名
2016/03/31 PHP
Javascript 日期处理之时区问题
2009/10/08 Javascript
Javascript 异步加载详解(浏览器在javascript的加载方式)
2012/05/20 Javascript
正负小数点后两位浮点数实现原理及代码
2013/09/06 Javascript
JavaScript实现的一个倒计时的类
2015/03/12 Javascript
简介AngularJS的HTML DOM支持情况
2015/06/17 Javascript
jQuery简单实现验证邮箱格式
2015/07/15 Javascript
Javascript刷新窗口方法小结
2015/10/21 Javascript
谈谈Jquery ajax中success和complete有哪些不同点
2015/11/20 Javascript
jQuery ajaxSubmit 实现ajax提交表单局部刷新
2016/07/04 Javascript
对js eval()函数的一些见解
2016/08/15 Javascript
浅谈jquery中使用canvas的问题
2016/10/10 Javascript
easyui tree带checkbox实现单选的简单实例
2016/11/07 Javascript
js仿淘宝商品放大预览功能
2017/03/15 Javascript
微信小程序 参数传递实例代码
2017/03/20 Javascript
VUE中v-on:click事件中获取当前dom元素的代码
2018/08/22 Javascript
mpvue项目中使用第三方UI组件库的方法
2018/09/30 Javascript
基于Ionic3实现选项卡切换并重新加载echarts
2020/09/24 Javascript
[01:34]传奇从这开始 2016国际邀请赛中国区预选赛震撼开启
2016/06/26 DOTA
python实现爬虫下载漫画示例
2014/02/16 Python
python UNIX_TIMESTAMP时间处理方法分析
2016/04/18 Python
selenium python 实现基本自动化测试的示例代码
2019/02/25 Python
Python如何基于rsa模块实现非对称加密与解密
2020/01/03 Python
python线程优先级队列知识点总结
2021/02/28 Python
HTML5新特性 多线程(Worker SharedWorker)
2017/04/24 HTML / CSS
中国旅游网站:同程旅游
2016/09/11 全球购物
简述DNS进行域名解析的过程
2013/12/02 面试题
银行出纳岗位职责
2013/11/25 职场文书
2014年药剂科工作总结
2014/11/26 职场文书
业务员岗位职责
2015/02/03 职场文书
个人催款函范文
2015/06/23 职场文书
前端学习——JavaScript原生实现购物车案例
2021/03/31 Javascript