Python 图像对比度增强的几种方法(小结)


Posted in Python onSeptember 25, 2019

图像处理工具——灰度直方图

灰度直方图时图像灰度级的函数,用来描述每个灰度级在图像矩阵中的像素个数或者占有率。
例子:矩阵

Python 图像对比度增强的几种方法(小结)

图片来自网络,侵删!

Python 图像对比度增强的几种方法(小结)

上面图片的灰度直方图

Python 图像对比度增强的几种方法(小结)

python实现

#!usr/bin/env python
#-*- coding:utf-8 _*-
"""
@author:Sui yue
@describe: 灰度直方图,描述每个灰度级在图像矩阵中的像素个数或者占有率
@time: 2019/09/15
"""

import sys
import cv2
import numpy as np
import matplotlib.pyplot as plt

#对于8位图,图像的灰度级范围式0~255之间的整数,通过定义函数来计算直方图
def calcGrayHist(image):
 #灰度图像矩阵的高、宽
 rows, cols = image.shape
 #存储灰度直方图
 grayHist=np.zeros([256],np.uint64)
 for r in range(rows):
  for c in range(cols):
   grayHist[image[r][c]] +=1
 return grayHist
#主函数
if __name__=="__main__":
 #第一个参数式图片地址,你只需放上你的图片就可
 image = cv2.imread('../images/test3.jpg', cv2.IMREAD_GRAYSCALE)
 cv2.imshow("image", image)
 print("Usge:python histogram.py imageFile")
 #计算灰度直方图
 grayHist=calcGrayHist(image)
 #画出灰度直方图
 x_range=range(256)
 plt.plot(x_range,grayHist,'r',linewidth=2,c='black')
 #设置坐标轴的范围
 y_maxValue=np.max(grayHist)
 plt.axis([0,255,0,y_maxValue])
 plt.ylabel('gray level')
 plt.ylabel("number or pixels")
 # 显示灰度直方图
 plt.show()
 cv2.waitKeyEx(0)

结果

Python 图像对比度增强的几种方法(小结)

线性变换

假设输入图像为I,宽W、高为H,输出图像为O,图像的线性变换可以利用以下公式:

Python 图像对比度增强的几种方法(小结)

a的改变影响图像的对比度,b的改变影响图像的亮度

线性变换python实现

#!usr/bin/env python3
#-*- coding:utf-8 -*-
#--------------------------
"""
@author:Sui yue
@describe: 对比增强,线性变换
@time: 2019/09/15 14:21:44
"""
import sys
import numpy as np
import cv2
import matplotlib.pyplot as plt
#主函数

def calcGrayHist(image):
 #灰度图像矩阵的高、宽
 rows, cols = image.shape
 #存储灰度直方图
 grayHist=np.zeros([256],np.uint64)
 for r in range(rows):
  for c in range(cols):
   grayHist[image[r][c]] +=1
   # 显示灰度直方图
 # 画出灰度直方图
 x_range = range(256)
 plt.plot(x_range, grayHist, 'r', linewidth=2, c='black')
 # 设置坐标轴的范围
 y_maxValue = np.max(grayHist)
 plt.axis([0, 255, 0, y_maxValue])
 plt.ylabel('gray level')
 plt.ylabel("number or pixels")
 # 显示灰度直方图
 plt.show()

if __name__=="__main__":
 # 读图像
 I = cv2.imread('../images/test3.jpg', cv2.IMREAD_GRAYSCALE)
 #线性变换
 a=3
 O=float(a)*I
 #进行数据截断,大于255 的值要截断为255
 O[0>255]=255
 #数据类型转换
 O=np.round(O)
 #uint8类型
 O=O.astype(np.uint8)
 #显示原图和线性变换后的效果
 cv2.imshow("I",I)
 cv2.imshow("O",O)
 calcGrayHist(I)
 calcGrayHist(O)
 cv2.waitKey(0)
 cv2.destroyAllWindows()

线性变换结果

Python 图像对比度增强的几种方法(小结)

灰度直方图

Python 图像对比度增强的几种方法(小结)

直方图正规化

假设输入图像为I,宽W、高为HIr,c)I(r,c)I(r,c)代表I的第r行第c列的灰度值,将I中出现的最小灰度级记为IminI_{min}Imin​,最大灰度级记为ImaxI_{max}Imax​,Ir,c[Imin,Imax]I(r,c)\in [I_{min},I_{max}]I(r,c)∈[Imin​,Imax​],为使输出图像O的灰度级范围为 [Omin,Omax][O_{min},O_{max}][Omin​,Omax​],Ir,c)I(r,c)I(r,c)和Or,c)O(r,c)O(r,c)做以下映射关系:

Python 图像对比度增强的几种方法(小结)

其中0r<H,0c<W\quad0\le r \lt H,0\le c \lt W0≤r<H,0≤c<W,O(r,c)O(r,c)O(r,c)代表O的第r行和第c列的灰度值。这个过程就是常称的直方图正规化。因为0I(r,c)IminImaxImin10 \le\frac{I(r,c)-I_{min}}{I_{max}-I_{min}} \le 10≤Imax​−Imin​I(r,c)−Imin​​≤1,所以O(r,c)[Omin,Omax]O(r,c) \in [O_{min},O_{max}]O(r,c)∈[Omin​,Omax​],一般令Omin=0O_{min}=0Omin​=0,Omax=255O_{max}=255Omax​=255。显然,直方图正规化使一种自动选取a和b的值的线性变换方法,其中

Python 图像对比度增强的几种方法(小结)

直方图正规化python实现

#!usr/bin/env python3
#-*- coding:utf-8 -*-
#--------------------------
"""
@author:Sui yue
@describe: 直方图正规化
@time: 2019/09/18 21:17:22
"""

import cv2
import numpy as np
import matplotlib.pyplot as plt
import sys

def calcGrayHist(image):
 #灰度图像矩阵的高、宽
 rows, cols = image.shape
 #存储灰度直方图
 grayHist=np.zeros([256],np.uint64)
 for r in range(rows):
  for c in range(cols):
   grayHist[image[r][c]] +=1
   # 显示灰度直方图
 # 画出灰度直方图
 x_range = range(256)
 plt.plot(x_range, grayHist, 'r', linewidth=2, c='black')
 # 设置坐标轴的范围
 y_maxValue = np.max(grayHist)
 plt.axis([0, 255, 0, y_maxValue])
 plt.ylabel('gray level')
 plt.ylabel("number or pixels")
 # 显示灰度直方图
 plt.show()
#主函数
if __name__ == '__main__':
 #读入图像
 I = cv2.imread('../images/test3.jpg', cv2.IMREAD_GRAYSCALE)
 #求I的最大值,最小值
 Imax=np.max(I)
 Imin=np.min(I)
 #要输出的最小灰度级和最大灰度级
 Omax,Omin=255,0
 #计算a和b的值 ,测试出*4 能看到人脸
 a=float(Omax-Omin)/(Imax-Imin)
 b=Omin-a*Imin
 #矩阵的线性变换
 O=a*I+b
 #数据类型转换
 O=O.astype(np.uint8)
 #显示原图和直方图正规化的效果
 cv2.imshow("I",I)
 cv2.imshow("O",O)
 calcGrayHist(O)
 cv2.waitKey(0)
 cv2.destroyAllWindows()

直方图正规化结果

Python 图像对比度增强的几种方法(小结)

Python 图像对比度增强的几种方法(小结)

伽马变换

假设输入图像为I,宽W、高为H,首先将其灰度值归一化到[0,1][0,1][0,1]范围,对于8位图来说,除以255即可。I(r,c)I(r,c)I(r,c)代表归一化后的第r行第c列的灰度值,为使输出图像O ,伽马变换就是令O(r,c)=I(r,c)γ,0r<H,0c<WO(r,c)=I(r,c)^\gamma,\quad0\le r \lt H,0\le c \lt WO(r,c)=I(r,c)γ,0≤r<H,0≤c<W,如下图所示:

Python 图像对比度增强的几种方法(小结)

γ=1\gamma=1γ=1时,图像不变。如果图像整体或者感兴趣区域较暗,则令0γ<10\le \gamma \lt 10≤γ<1可以增加图像对比度;相反图像整体或者感兴趣区域较亮,则令γ>1\gamma \gt 1γ>1可以降低图像对比度。

伽马变换python实现

#!usr/bin/env python3
#-*- coding:utf-8 -*-
#--------------------------
"""
@author:Sui yue
@describe: 对比增强 伽马变换
@time: 2019/09/18 22:22:51
"""
import cv2
import numpy as np
import sys
#主函数
if __name__ == '__main__':
  I = cv2.imread('../images/test3.jpg', cv2.IMREAD_GRAYSCALE)
  #图像归一化
  fI=I/255.0
  #伽马变换
  gamma=0.3
  O=np.power(fI,gamma)
  #显示原图和伽马变换
  cv2.imshow("I",I)
  cv2.imshow("O",O)
  cv2.waitKey()
  cv2.destroyAllWindows()

伽马变换结果

Python 图像对比度增强的几种方法(小结)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
介绍Python中的fabs()方法的使用
May 14 Python
python修改操作系统时间的方法
May 18 Python
详解Python的Lambda函数与排序
Oct 25 Python
Python单例模式实例详解
Mar 01 Python
老生常谈Python进阶之装饰器
May 11 Python
python实现决策树分类算法
Dec 21 Python
详谈python3中用for循环删除列表中元素的坑
Apr 19 Python
python3+PyQt5实现自定义流体混合窗口部件
Apr 24 Python
python实现自动发送报警监控邮件
Jun 21 Python
Python将多个list合并为1个list的方法
Jun 27 Python
Python函数参数匹配模型通用规则keyword-only参数详解
Jun 10 Python
Django项目在pycharm新建的步骤方法
Mar 02 Python
pyqt5、qtdesigner安装和环境设置教程
Sep 25 #Python
python super的使用方法及实例详解
Sep 25 #Python
Pycharm+Python+PyQt5使用详解
Sep 25 #Python
利用python、tensorflow、opencv、pyqt5实现人脸实时签到系统
Sep 25 #Python
Python 3.6 中使用pdfminer解析pdf文件的实现
Sep 25 #Python
Python实现串口通信(pyserial)过程解析
Sep 25 #Python
Python根据服务获取端口号的方法
Sep 25 #Python
You might like
短波问题解答
2021/02/28 无线电
destoon实现首页显示供应、企业、资讯条数的方法
2014/07/15 PHP
PHP中UNIX时间戳和日期间的转换与计算实例
2014/11/19 PHP
微信公众平台开发-微信服务器IP接口实例(含源码)
2017/03/05 PHP
yii 2.0中表单小部件的使用方法示例
2017/05/23 PHP
实例:尽可能写友好的Javascript代码
2006/10/09 Javascript
passwordStrength 基于jquery的密码强度检测代码使用介绍
2011/10/08 Javascript
JavaScript中的匀速运动和变速(缓冲)运动详细介绍
2012/11/11 Javascript
Jquery封装tab自动切换效果的具体实现
2013/07/13 Javascript
JavaScript中json使用自己总结
2013/08/13 Javascript
自编jQuery插件实现模拟alert和confirm
2014/09/01 Javascript
JS使用oumousemove和oumouseout动态改变图片显示的方法
2015/03/31 Javascript
JavaScript将字符串转换为整数的方法
2015/04/14 Javascript
jquery插件orbit.js实现图片折叠轮换特效
2015/04/14 Javascript
jQuery实现鼠标划过添加和删除class的方法
2015/06/26 Javascript
PHP结合jQuery实现的评论顶、踩功能
2015/07/22 Javascript
JavaScript与HTML的结合方法详解
2015/11/23 Javascript
设置jquery UI 控件的大小方法
2016/12/12 Javascript
javascript实现页面滚屏效果
2017/01/17 Javascript
基于jQuery Ajax实现下拉框无刷新联动
2017/12/06 jQuery
微信小程序如何获取openid及用户信息
2018/01/26 Javascript
python查看zip包中文件及大小的方法
2015/07/09 Python
Python 读写文件和file对象的方法(推荐)
2016/09/12 Python
python3实现抓取网页资源的 N 种方法
2017/05/02 Python
解决Matplotlib图表不能在Pycharm中显示的问题
2018/05/24 Python
对python多线程中Lock()与RLock()锁详解
2019/01/11 Python
Django之模板层的实现代码
2019/09/09 Python
python学习将数据写入文件并保存方法
2020/06/07 Python
python属于跨平台语言码
2020/06/09 Python
初一体育教学反思
2014/01/29 职场文书
信息技术毕业生自荐信范文
2014/03/13 职场文书
领导干部个人对照检查材料(群众路线)
2014/09/26 职场文书
初中生毕业评语
2014/12/29 职场文书
外国人来华邀请函
2015/01/31 职场文书
酒店工程部岗位职责
2015/02/12 职场文书
2016春季幼儿园大班开学寄语
2015/12/03 职场文书