Python 图像对比度增强的几种方法(小结)


Posted in Python onSeptember 25, 2019

图像处理工具——灰度直方图

灰度直方图时图像灰度级的函数,用来描述每个灰度级在图像矩阵中的像素个数或者占有率。
例子:矩阵

Python 图像对比度增强的几种方法(小结)

图片来自网络,侵删!

Python 图像对比度增强的几种方法(小结)

上面图片的灰度直方图

Python 图像对比度增强的几种方法(小结)

python实现

#!usr/bin/env python
#-*- coding:utf-8 _*-
"""
@author:Sui yue
@describe: 灰度直方图,描述每个灰度级在图像矩阵中的像素个数或者占有率
@time: 2019/09/15
"""

import sys
import cv2
import numpy as np
import matplotlib.pyplot as plt

#对于8位图,图像的灰度级范围式0~255之间的整数,通过定义函数来计算直方图
def calcGrayHist(image):
 #灰度图像矩阵的高、宽
 rows, cols = image.shape
 #存储灰度直方图
 grayHist=np.zeros([256],np.uint64)
 for r in range(rows):
  for c in range(cols):
   grayHist[image[r][c]] +=1
 return grayHist
#主函数
if __name__=="__main__":
 #第一个参数式图片地址,你只需放上你的图片就可
 image = cv2.imread('../images/test3.jpg', cv2.IMREAD_GRAYSCALE)
 cv2.imshow("image", image)
 print("Usge:python histogram.py imageFile")
 #计算灰度直方图
 grayHist=calcGrayHist(image)
 #画出灰度直方图
 x_range=range(256)
 plt.plot(x_range,grayHist,'r',linewidth=2,c='black')
 #设置坐标轴的范围
 y_maxValue=np.max(grayHist)
 plt.axis([0,255,0,y_maxValue])
 plt.ylabel('gray level')
 plt.ylabel("number or pixels")
 # 显示灰度直方图
 plt.show()
 cv2.waitKeyEx(0)

结果

Python 图像对比度增强的几种方法(小结)

线性变换

假设输入图像为I,宽W、高为H,输出图像为O,图像的线性变换可以利用以下公式:

Python 图像对比度增强的几种方法(小结)

a的改变影响图像的对比度,b的改变影响图像的亮度

线性变换python实现

#!usr/bin/env python3
#-*- coding:utf-8 -*-
#--------------------------
"""
@author:Sui yue
@describe: 对比增强,线性变换
@time: 2019/09/15 14:21:44
"""
import sys
import numpy as np
import cv2
import matplotlib.pyplot as plt
#主函数

def calcGrayHist(image):
 #灰度图像矩阵的高、宽
 rows, cols = image.shape
 #存储灰度直方图
 grayHist=np.zeros([256],np.uint64)
 for r in range(rows):
  for c in range(cols):
   grayHist[image[r][c]] +=1
   # 显示灰度直方图
 # 画出灰度直方图
 x_range = range(256)
 plt.plot(x_range, grayHist, 'r', linewidth=2, c='black')
 # 设置坐标轴的范围
 y_maxValue = np.max(grayHist)
 plt.axis([0, 255, 0, y_maxValue])
 plt.ylabel('gray level')
 plt.ylabel("number or pixels")
 # 显示灰度直方图
 plt.show()

if __name__=="__main__":
 # 读图像
 I = cv2.imread('../images/test3.jpg', cv2.IMREAD_GRAYSCALE)
 #线性变换
 a=3
 O=float(a)*I
 #进行数据截断,大于255 的值要截断为255
 O[0>255]=255
 #数据类型转换
 O=np.round(O)
 #uint8类型
 O=O.astype(np.uint8)
 #显示原图和线性变换后的效果
 cv2.imshow("I",I)
 cv2.imshow("O",O)
 calcGrayHist(I)
 calcGrayHist(O)
 cv2.waitKey(0)
 cv2.destroyAllWindows()

线性变换结果

Python 图像对比度增强的几种方法(小结)

灰度直方图

Python 图像对比度增强的几种方法(小结)

直方图正规化

假设输入图像为I,宽W、高为HIr,c)I(r,c)I(r,c)代表I的第r行第c列的灰度值,将I中出现的最小灰度级记为IminI_{min}Imin​,最大灰度级记为ImaxI_{max}Imax​,Ir,c[Imin,Imax]I(r,c)\in [I_{min},I_{max}]I(r,c)∈[Imin​,Imax​],为使输出图像O的灰度级范围为 [Omin,Omax][O_{min},O_{max}][Omin​,Omax​],Ir,c)I(r,c)I(r,c)和Or,c)O(r,c)O(r,c)做以下映射关系:

Python 图像对比度增强的几种方法(小结)

其中0r<H,0c<W\quad0\le r \lt H,0\le c \lt W0≤r<H,0≤c<W,O(r,c)O(r,c)O(r,c)代表O的第r行和第c列的灰度值。这个过程就是常称的直方图正规化。因为0I(r,c)IminImaxImin10 \le\frac{I(r,c)-I_{min}}{I_{max}-I_{min}} \le 10≤Imax​−Imin​I(r,c)−Imin​​≤1,所以O(r,c)[Omin,Omax]O(r,c) \in [O_{min},O_{max}]O(r,c)∈[Omin​,Omax​],一般令Omin=0O_{min}=0Omin​=0,Omax=255O_{max}=255Omax​=255。显然,直方图正规化使一种自动选取a和b的值的线性变换方法,其中

Python 图像对比度增强的几种方法(小结)

直方图正规化python实现

#!usr/bin/env python3
#-*- coding:utf-8 -*-
#--------------------------
"""
@author:Sui yue
@describe: 直方图正规化
@time: 2019/09/18 21:17:22
"""

import cv2
import numpy as np
import matplotlib.pyplot as plt
import sys

def calcGrayHist(image):
 #灰度图像矩阵的高、宽
 rows, cols = image.shape
 #存储灰度直方图
 grayHist=np.zeros([256],np.uint64)
 for r in range(rows):
  for c in range(cols):
   grayHist[image[r][c]] +=1
   # 显示灰度直方图
 # 画出灰度直方图
 x_range = range(256)
 plt.plot(x_range, grayHist, 'r', linewidth=2, c='black')
 # 设置坐标轴的范围
 y_maxValue = np.max(grayHist)
 plt.axis([0, 255, 0, y_maxValue])
 plt.ylabel('gray level')
 plt.ylabel("number or pixels")
 # 显示灰度直方图
 plt.show()
#主函数
if __name__ == '__main__':
 #读入图像
 I = cv2.imread('../images/test3.jpg', cv2.IMREAD_GRAYSCALE)
 #求I的最大值,最小值
 Imax=np.max(I)
 Imin=np.min(I)
 #要输出的最小灰度级和最大灰度级
 Omax,Omin=255,0
 #计算a和b的值 ,测试出*4 能看到人脸
 a=float(Omax-Omin)/(Imax-Imin)
 b=Omin-a*Imin
 #矩阵的线性变换
 O=a*I+b
 #数据类型转换
 O=O.astype(np.uint8)
 #显示原图和直方图正规化的效果
 cv2.imshow("I",I)
 cv2.imshow("O",O)
 calcGrayHist(O)
 cv2.waitKey(0)
 cv2.destroyAllWindows()

直方图正规化结果

Python 图像对比度增强的几种方法(小结)

Python 图像对比度增强的几种方法(小结)

伽马变换

假设输入图像为I,宽W、高为H,首先将其灰度值归一化到[0,1][0,1][0,1]范围,对于8位图来说,除以255即可。I(r,c)I(r,c)I(r,c)代表归一化后的第r行第c列的灰度值,为使输出图像O ,伽马变换就是令O(r,c)=I(r,c)γ,0r<H,0c<WO(r,c)=I(r,c)^\gamma,\quad0\le r \lt H,0\le c \lt WO(r,c)=I(r,c)γ,0≤r<H,0≤c<W,如下图所示:

Python 图像对比度增强的几种方法(小结)

γ=1\gamma=1γ=1时,图像不变。如果图像整体或者感兴趣区域较暗,则令0γ<10\le \gamma \lt 10≤γ<1可以增加图像对比度;相反图像整体或者感兴趣区域较亮,则令γ>1\gamma \gt 1γ>1可以降低图像对比度。

伽马变换python实现

#!usr/bin/env python3
#-*- coding:utf-8 -*-
#--------------------------
"""
@author:Sui yue
@describe: 对比增强 伽马变换
@time: 2019/09/18 22:22:51
"""
import cv2
import numpy as np
import sys
#主函数
if __name__ == '__main__':
  I = cv2.imread('../images/test3.jpg', cv2.IMREAD_GRAYSCALE)
  #图像归一化
  fI=I/255.0
  #伽马变换
  gamma=0.3
  O=np.power(fI,gamma)
  #显示原图和伽马变换
  cv2.imshow("I",I)
  cv2.imshow("O",O)
  cv2.waitKey()
  cv2.destroyAllWindows()

伽马变换结果

Python 图像对比度增强的几种方法(小结)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
深入理解Python中命名空间的查找规则LEGB
Aug 06 Python
PyTorch读取Cifar数据集并显示图片的实例讲解
Jul 27 Python
Python 加密与解密小结
Dec 06 Python
解决django后台样式丢失,css资源加载失败的问题
Jun 11 Python
Pandas时间序列基础详解(转换,索引,切片)
Feb 26 Python
Tensorflow tf.nn.atrous_conv2d如何实现空洞卷积的
Apr 20 Python
浅谈django框架集成swagger以及自定义参数问题
Jul 07 Python
解决Python 函数声明先后顺序出现的问题
Sep 02 Python
python中remove函数的踩坑记录
Jan 04 Python
pytest fixtures装饰器的使用和如何控制用例的执行顺序
Jan 28 Python
Python解析m3u8拼接下载mp4视频文件的示例代码
Mar 03 Python
Python多线程 Queue 模块常见用法
Jul 04 Python
pyqt5、qtdesigner安装和环境设置教程
Sep 25 #Python
python super的使用方法及实例详解
Sep 25 #Python
Pycharm+Python+PyQt5使用详解
Sep 25 #Python
利用python、tensorflow、opencv、pyqt5实现人脸实时签到系统
Sep 25 #Python
Python 3.6 中使用pdfminer解析pdf文件的实现
Sep 25 #Python
Python实现串口通信(pyserial)过程解析
Sep 25 #Python
Python根据服务获取端口号的方法
Sep 25 #Python
You might like
PHP内核探索:变量概述
2014/01/30 PHP
Yii框架扩展CGridView增加导出CSV功能的方法
2017/05/24 PHP
PHP 7.4 新语法之箭头函数实例详解
2019/05/09 PHP
PHP常量DIRECTORY_SEPARATOR原理及用法解析
2020/11/10 PHP
Javascript MD4
2006/12/20 Javascript
常用一些Javascript判断函数
2012/08/14 Javascript
JS验证控制输入中英文字节长度(input、textarea等)具体实例
2013/06/21 Javascript
JS动态改变表格边框宽度的方法
2015/03/31 Javascript
编写高质量JavaScript代码的基本要点
2016/03/02 Javascript
jquery ui sortable拖拽后保存位置
2017/04/27 jQuery
vue修改vue项目运行端口号的方法
2017/08/04 Javascript
利用HBuilder打包前端开发webapp为apk的方法
2017/11/13 Javascript
详解为Bootstrap Modal添加拖拽的方法
2018/01/05 Javascript
基于vue-resource jsonp跨域问题的解决方法
2018/02/03 Javascript
Javascript中弹窗confirm与prompt的区别
2018/10/26 Javascript
vue组件开发之slider组件使用详解
2020/08/21 Javascript
python中的变量如何开辟内存
2018/06/26 Python
解决使用pycharm提交代码时冲突之后文件丢失找回的方法
2018/08/05 Python
python3.5绘制随机漫步图
2018/08/27 Python
解决pycharm工程启动卡住没反应的问题
2019/01/19 Python
Python openpyxl模块原理及用法解析
2020/01/19 Python
python uuid生成唯一id或str的最简单案例
2021/01/13 Python
浅谈html5之sse服务器发送事件EventSource介绍
2017/08/28 HTML / CSS
新加坡最早生产电动滑板车的制造商之一:FunsToTheFore
2020/09/08 全球购物
如果一个类实现了多个接口但是这些接口有相同的方法名将会怎样
2013/06/16 面试题
环境工程专业个人求职信
2013/12/05 职场文书
中式餐厅创业计划书范文
2014/01/23 职场文书
毕业自我评价
2014/02/05 职场文书
法律系毕业生自荐信范文
2014/03/27 职场文书
反邪教警示教育方案
2014/05/13 职场文书
股份合作协议书
2014/09/10 职场文书
司机工作自我鉴定
2014/09/19 职场文书
2014房屋登记授权委托书
2014/10/13 职场文书
初婚初育证明范本
2015/06/18 职场文书
基于PyQT5制作一个桌面摸鱼工具
2022/02/15 Python
Python面试不修改数组找出重复的数字
2022/05/20 Python