通过代码实例了解Python3编程技巧


Posted in Python onOctober 13, 2020

高效处理数据类型方法:

处理数据

In [1]: from random import randint

In [2]: data=[randint(-10,10) for _ in range(10)]

In [3]: data
Out[3]: [-3, -4, 3, 4, 7, -2, -4, 1, 7, -9]

#过滤列表中的负数
In [9]: list(filter(lambda x:x>=0,data))
Out[9]: [3, 4, 7, 1, 7]

[for x in data if x>=0]
# 列表生成式解法
[x for x in data if x>=0]

#哪个更快,列表解析更快,远快于迭代
In [15]: %timeit [x for x in data if x>=0]
581 ns ± 23.8 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

In [16]: %timeit filter(lambda x:x>=0,data)
237 ns ± 4 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

#得到20个同学的成绩
d={x:randint(60,100)for x in range(1,21)}
#字典解析式,iteritems同时迭代字典,
#
#得到分数大于90的同学
{k:v for k,v in d.items() if v>90}


#集合解析
In [35]: {x for x in s if x %3 ==0}
Out[35]: {-9, -3, 3}

#为元祖中的每个元素命名,提高程序可读性
#元祖存储空间小,访问速度快
#定义常量
NAME = 0
AGE=1
SEX=2
EMAIL=3
#拆包用法,定义类似其他语言的枚举类型,也就是定义数值常量
NAME,AGE,SEX,EMAIL=range(4)

#案例
student=('Jim',16,'male','jin@163.com')
#name
print(student[0])
#age
print(student[1])
#通过常量可以优化为
print(student[NAME])
print(student[AGE])

#namedtuple是继承自tuple的子类,namedtuple和tuple比较有更酷的特性
#namedtuple创建一个和tuple类似的对象,而且对象拥有可以访问的属性。这对象更像带有数据属性的类,不过数据属性是只读的。
from collections import namedtuple
Student = namedtuple('Student',['name','age','sex','email'])
s=Student('Jim',16,'male','jim@163.com')
s.name 
s.age

#统计序列中元素出现的频度
from random import randint
data=[randint(0,20) for _ in range(30)]
#创建字典{0:0,1:0,...}
#方法1
c=dict.fromkeys(data,0)
In [52]: for x in data:
  ...:   c[x]+=1

#方法2,统计词频
from collections import Counter
c2=Counter(data)#讲序列传入Counter的构造器,得到Counter对象是元素频度的字典
#使用most_common统计词频
In [58]: c2.most_common(3)
Out[58]: [(10, 4), (20, 3), (8, 3)]
#统计英文作文词频
import re
txt=open('emmmm.txt').read()
#分割后赋给Counter
c3=Counter(re.split('\W',txt))
#找到频率最高的10个单词
c3.most_common(10)

#内置函数是以c的速度运行,如sorted
from random import randint 
d={x:randint(60,100) for x in 'xyzabc'}
#{'a': 91, 'b': 65, 'c': 76, 'x': 85, 'y': 84, 'z': 72}
# sorted(d)
In [15]: zip(d.values(),d.keys())
Out[15]: <zip at 0x108b34dc8>

In [16]: list(zip(d.values(),d.keys()))
Out[16]: [(68, 'x'), (70, 'y'), (77, 'z'), (72, 'a'), (65, 'b'), (69, 'c')]

#快速找到多个字典中的公共键
#In [1]: from random import randint,sample

In [2]: sample('abcdefg',3)
Out[2]: ['c', 'a', 'b']


In [4]: sample('abcdefg',randint(3,6))
Out[4]: ['b', 'a', 'd']

In [5]: s1={x:randint(1,4)for x in sample('abcdefg',randint(3,6))}

In [9]: s1
Out[9]: {'a': 1, 'b': 2, 'c': 3, 'f': 3, 'g': 3}

In [10]: s1={x:randint(1,4)for x in sample('abcdefg',randint(3,6))}

In [11]: s1
Out[11]: {'b': 2, 'd': 3, 'g': 3}

In [12]: s1
Out[12]: {'b': 2, 'd': 3, 'g': 3}

In [13]: s2={x:randint(1,4)for x in sample('abcdefg',randint(3,6))}

In [15]: s3={x:randint(1,4)for x in sample('abcdefg',randint(3,6))}
#for循环遍历方法,找到s2,s3都有的k
In [19]: res=[]

In [20]: for k in s1:
  ...:   if k in s2 and k in s3:
  ...:     res.append(k
  ...:     )
  ...:     
  ...:     

In [21]: res
Out[21]: ['b']
#通过字典的keys()方法,找到三个字典同样的key
In [26]: s1.keys()&s2.keys()&s3.keys()
Out[26]: {'b'}
#通过map得到一个迭代器对象
#In [27]: map(dict.keys,[s1,s2,s3])
Out[27]: <map at 0x108891b70>

In [28]: list(map(dict.keys,[s1,s2,s3]))
Out[28]: 
[dict_keys(['g', 'd', 'b']),
 dict_keys(['g', 'a', 'c', 'b', 'f']),
 dict_keys(['d', 'f', 'b', 'c', 'e', 'a'])]
#通过reduce取出同样结果
In [30]: from functools import reduce

In [31]: reduce(lambda a,b:a&b,map(dict.keys,[s1,s2,s3]))
Out[31]: {'b'}

#使得
from time import time
from random import randint
from collections import OrderedDict

d=OrderedDict()
players = list("ABCDEFGH")
start=time()
for i in range(8):
  input()
  p=players.pop(randint(0,8-i))
  end=time()
  print(i+1,p,end-start)
  d[p]=(i+1,end-start)
print('')
print('-'*20)
for k in d:
  print(k,d[k])
#查看用户历史记录功能,标准库collections的deque,双端循环队列,存在内容中,pickle存储到文件
from random import randint
from collections import deque
N = randint(0,100)
history = deque([],5)
def guess(K):
  if K ==N:
   print('正确')
   return True
  if K < N:
   print('%s is less-than N'%K)
  else:
    print("%s is greater-than N"%K)
  return False
while True:
  line = input("请输入一个数字:")
  if line.isdigit():
   k=int(line)
   history.append(k)
   if guess(k):
     break
  elif line =='history' or line =='h?':
    print(list(history))

可迭代对象和迭代器对象:

可迭代与迭代器对象

可迭代对象和迭代器对象

需求:从网络抓取每个城市的气温消息,显示
北京:15-20
黑龙江:3-10
上海13-19
一次抓取所有城市信息,会占很大的存储空间,现在想“用时访问”,吧所有城市气温封装到一个对象里,用for迭代

可迭代对象:

In [1]: l=[1,2,3,4,5]

In [2]: s='abcde'

iter内置函数,可以得到一个迭代器对象
由可迭代对象,得到迭代器

iter(l)

In [23]: type(l)
Out[23]: list

In [24]: type(iter(l))
Out[24]: list_iterator

可迭代对象都有__iter方法,可迭代接口
或者__getitem__序列接口

可迭代对象可以通过next()取值

In [26]: t=iter(l)

In [27]: next(t)
Out[27]: 1

In [28]: next(t)
Out[28]: 2

In [29]: next(t)
Out[29]: 3

In [30]: next(t)
Out[30]: 4

In [31]: next(t)
Out[31]: 5

In [32]: next(t)
---------------------------------------------------------------------------
StopIteration               Traceback (most recent call last)
<ipython-input-32-f843efe259be> in <module>()
----> 1 next(t)

StopIteration:

读写取excel文件

Microsoft Excel是Microsoft为使用Windows和Apple Macintosh操作系统的计算机编写的一款电子表格软件。直观的界面、出色的计算功能和图表工具,再加上成功的市场营销,使Excel成为最流行的个人计算机数据处理软件。

xlrd使用方法

import xlrd
#打开excel文件,创建一个workbook对象,book对象也就是s11.xlsx文件,表含有sheet名
rbook=xlrd.open_workbook('/Users/yuchao/s11.xlsx')
#sheets方法返回对象列表,[<xlrd.sheet.Sheet object at 0x103f147f0>]
rbook.sheets()
rsheet=rbook.sheet_by_index(0)
#访问行数
rows=rsheet.nrows
#访问列数
cols=rsheet.ncols
print('行数:',rows,'列数',cols)
#通过cell的位置坐标取得cell值
cell=rsheet.cell(0,0)
print('0,0坐标的值是:',cell.value)
#取得第二行的值,参数是(行数,起点,终点)
row1=rsheet.row_values(1)
print('第一行的值是:',row1)

xlwt修改excel

# -*- coding:utf-8 -*-
# Author : yuchao
# Data : 2018/7/18 16:08


import xlrd, xlwt

rbook = xlrd.open_workbook('/Users/yuchao/s11.xlsx')
rsheet = rbook.sheet_by_index(0) # 取得sheet对象1
# 列数
nc = rsheet.ncols
# 写入一条数据
rsheet.put_cell(0, nc, xlrd.XL_CELL_TEXT, '总分', None)

# 遍历数据的行数
for row in range(1, rsheet.nrows):
  # 求和每一行数据
  t = sum(rsheet.row_values(row, 1))
  rsheet.put_cell(row, nc, xlrd.XL_CELL_NUMBER, t, None)
#创建文档对象
wbook = xlwt.Workbook()
wsheet = wbook.add_sheet(rsheet.name)
#设置样式
style = xlwt.easyxf('align: vertical center, horizontal center')
#遍历每一行
for r in range(rsheet.nrows):
  #每一列
  for c in range(rsheet.ncols):
    wsheet.write(r,c,rsheet.cell_value(r,c),style)
wbook.save('/Users/yuchao/s11_bak.xlsx')

读取excel

import xlrd
from xlrd.book import Book
from xlrd.sheet import Sheet
from xlrd.sheet import Cell

workbook = xlrd.open_workbook('/Users/yuchao/s11.xlsx')

sheet_names = workbook.sheet_names()

# sheet = workbook.sheet_by_name('工作表1')
sheet = workbook.sheet_by_index(1)

# 循环Excel文件的所有行
for row in sheet.get_rows():
  # 循环一行的所有列
  for col in row:
    # 获取一个单元格中的值
    print(col.value)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python多进程中的内存复制(实例讲解)
Jan 05 Python
Python2.7 实现引入自己写的类方法
Apr 29 Python
Python 删除连续出现的指定字符的实例
Jun 29 Python
Python+OpenCV+pyQt5录制双目摄像头视频的实例
Jun 28 Python
django 使用全局搜索功能的实例详解
Jul 18 Python
python3 selenium自动化 frame表单嵌套的切换方法
Aug 23 Python
python打印直角三角形与等腰三角形实例代码
Oct 20 Python
python实现通过队列完成进程间的多任务功能示例
Oct 28 Python
Python求平面内点到直线距离的实现
Jan 19 Python
对python中各个response的使用说明
Mar 28 Python
使用Matplotlib绘制不同颜色的带箭头的线实例
Apr 17 Python
使用python-Jenkins批量创建及修改jobs操作
May 12 Python
Python SQLAlchemy库的使用方法
Oct 13 #Python
Pycharm github配置实现过程图解
Oct 13 #Python
详解numpy.ndarray.reshape()函数的参数问题
Oct 13 #Python
Python求区间正整数内所有素数之和的方法实例
Oct 13 #Python
python关于倒排列的知识点总结
Oct 13 #Python
Python如何使用ElementTree解析xml
Oct 12 #Python
Django ModelForm组件原理及用法详解
Oct 12 #Python
You might like
第二节--PHP5 的对象模型
2006/11/16 PHP
PHP is_dir() 判断给定文件名是否是一个目录
2010/05/10 PHP
php curl 伪造IP来源的实例代码
2012/11/01 PHP
PHP仿博客园 个人博客(2) 数据库增添改删
2013/07/05 PHP
laravel安装zend opcache加速器教程
2015/03/02 PHP
php查询内存信息操作示例
2019/05/09 PHP
PHP读取Excel内的图片(phpspreadsheet和PHPExcel扩展库)
2019/11/19 PHP
Add Formatted Text to a Word Document
2007/06/15 Javascript
jQuery实现表单input中提示文字value随鼠标焦点移进移出而显示或隐藏的代码
2010/03/21 Javascript
使用JavaScript 实现各种跨域的方法
2013/05/08 Javascript
微信小程序使用第三方库Underscore.js步骤详解
2016/09/27 Javascript
JS IOS/iPhone的Safari浏览器不兼容Javascript中的Date()问题如何解决
2016/11/11 Javascript
vue组件watch属性实例讲解
2017/11/07 Javascript
vue监听键盘事件的快捷方法【推荐】
2018/07/11 Javascript
在React项目中使用Eslint代码检查工具及常见问题
2018/10/10 Javascript
vue中promise的使用及异步请求数据的方法
2018/11/08 Javascript
在Node.js下运用MQTT协议实现即时通讯及离线推送的方法
2019/01/24 Javascript
webpack的 rquire.context用法实现工程自动化的方法
2020/02/07 Javascript
[02:40]DOTA2英雄基础教程 先知
2013/11/29 DOTA
[07:03]显微镜下的DOTA2第九期——430圣堂刺客杀戮秀
2014/06/20 DOTA
python提取内容关键词的方法
2015/03/16 Python
用Python的pandas框架操作Excel文件中的数据教程
2015/03/31 Python
Python使用Pickle模块进行数据保存和读取的讲解
2019/04/09 Python
Python使用LDAP做用户认证的方法
2019/06/20 Python
python 实现图片上传接口开发 并生成可以访问的图片url
2019/12/18 Python
python dict如何定义
2020/09/02 Python
Django实现简单的分页功能
2021/02/22 Python
用CSS3实现无限循环的无缝滚动的实例代码
2017/07/04 HTML / CSS
中东最大的在线宠物店:Dubai Pet Food
2020/06/11 全球购物
公司活动邀请函
2014/01/24 职场文书
社区健康教育工作方案
2014/06/03 职场文书
博士生导师推荐信
2014/07/08 职场文书
中学生关于梦想的演讲稿
2014/08/22 职场文书
2014年音乐教师工作总结
2014/12/03 职场文书
幼儿园万圣节活动总结
2015/05/05 职场文书
vue本地构建热更新卡顿的问题“75 advanced module optimization”完美解决方案
2022/08/05 Vue.js