通过代码实例了解Python3编程技巧


Posted in Python onOctober 13, 2020

高效处理数据类型方法:

处理数据

In [1]: from random import randint

In [2]: data=[randint(-10,10) for _ in range(10)]

In [3]: data
Out[3]: [-3, -4, 3, 4, 7, -2, -4, 1, 7, -9]

#过滤列表中的负数
In [9]: list(filter(lambda x:x>=0,data))
Out[9]: [3, 4, 7, 1, 7]

[for x in data if x>=0]
# 列表生成式解法
[x for x in data if x>=0]

#哪个更快,列表解析更快,远快于迭代
In [15]: %timeit [x for x in data if x>=0]
581 ns ± 23.8 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

In [16]: %timeit filter(lambda x:x>=0,data)
237 ns ± 4 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

#得到20个同学的成绩
d={x:randint(60,100)for x in range(1,21)}
#字典解析式,iteritems同时迭代字典,
#
#得到分数大于90的同学
{k:v for k,v in d.items() if v>90}


#集合解析
In [35]: {x for x in s if x %3 ==0}
Out[35]: {-9, -3, 3}

#为元祖中的每个元素命名,提高程序可读性
#元祖存储空间小,访问速度快
#定义常量
NAME = 0
AGE=1
SEX=2
EMAIL=3
#拆包用法,定义类似其他语言的枚举类型,也就是定义数值常量
NAME,AGE,SEX,EMAIL=range(4)

#案例
student=('Jim',16,'male','jin@163.com')
#name
print(student[0])
#age
print(student[1])
#通过常量可以优化为
print(student[NAME])
print(student[AGE])

#namedtuple是继承自tuple的子类,namedtuple和tuple比较有更酷的特性
#namedtuple创建一个和tuple类似的对象,而且对象拥有可以访问的属性。这对象更像带有数据属性的类,不过数据属性是只读的。
from collections import namedtuple
Student = namedtuple('Student',['name','age','sex','email'])
s=Student('Jim',16,'male','jim@163.com')
s.name 
s.age

#统计序列中元素出现的频度
from random import randint
data=[randint(0,20) for _ in range(30)]
#创建字典{0:0,1:0,...}
#方法1
c=dict.fromkeys(data,0)
In [52]: for x in data:
  ...:   c[x]+=1

#方法2,统计词频
from collections import Counter
c2=Counter(data)#讲序列传入Counter的构造器,得到Counter对象是元素频度的字典
#使用most_common统计词频
In [58]: c2.most_common(3)
Out[58]: [(10, 4), (20, 3), (8, 3)]
#统计英文作文词频
import re
txt=open('emmmm.txt').read()
#分割后赋给Counter
c3=Counter(re.split('\W',txt))
#找到频率最高的10个单词
c3.most_common(10)

#内置函数是以c的速度运行,如sorted
from random import randint 
d={x:randint(60,100) for x in 'xyzabc'}
#{'a': 91, 'b': 65, 'c': 76, 'x': 85, 'y': 84, 'z': 72}
# sorted(d)
In [15]: zip(d.values(),d.keys())
Out[15]: <zip at 0x108b34dc8>

In [16]: list(zip(d.values(),d.keys()))
Out[16]: [(68, 'x'), (70, 'y'), (77, 'z'), (72, 'a'), (65, 'b'), (69, 'c')]

#快速找到多个字典中的公共键
#In [1]: from random import randint,sample

In [2]: sample('abcdefg',3)
Out[2]: ['c', 'a', 'b']


In [4]: sample('abcdefg',randint(3,6))
Out[4]: ['b', 'a', 'd']

In [5]: s1={x:randint(1,4)for x in sample('abcdefg',randint(3,6))}

In [9]: s1
Out[9]: {'a': 1, 'b': 2, 'c': 3, 'f': 3, 'g': 3}

In [10]: s1={x:randint(1,4)for x in sample('abcdefg',randint(3,6))}

In [11]: s1
Out[11]: {'b': 2, 'd': 3, 'g': 3}

In [12]: s1
Out[12]: {'b': 2, 'd': 3, 'g': 3}

In [13]: s2={x:randint(1,4)for x in sample('abcdefg',randint(3,6))}

In [15]: s3={x:randint(1,4)for x in sample('abcdefg',randint(3,6))}
#for循环遍历方法,找到s2,s3都有的k
In [19]: res=[]

In [20]: for k in s1:
  ...:   if k in s2 and k in s3:
  ...:     res.append(k
  ...:     )
  ...:     
  ...:     

In [21]: res
Out[21]: ['b']
#通过字典的keys()方法,找到三个字典同样的key
In [26]: s1.keys()&s2.keys()&s3.keys()
Out[26]: {'b'}
#通过map得到一个迭代器对象
#In [27]: map(dict.keys,[s1,s2,s3])
Out[27]: <map at 0x108891b70>

In [28]: list(map(dict.keys,[s1,s2,s3]))
Out[28]: 
[dict_keys(['g', 'd', 'b']),
 dict_keys(['g', 'a', 'c', 'b', 'f']),
 dict_keys(['d', 'f', 'b', 'c', 'e', 'a'])]
#通过reduce取出同样结果
In [30]: from functools import reduce

In [31]: reduce(lambda a,b:a&b,map(dict.keys,[s1,s2,s3]))
Out[31]: {'b'}

#使得
from time import time
from random import randint
from collections import OrderedDict

d=OrderedDict()
players = list("ABCDEFGH")
start=time()
for i in range(8):
  input()
  p=players.pop(randint(0,8-i))
  end=time()
  print(i+1,p,end-start)
  d[p]=(i+1,end-start)
print('')
print('-'*20)
for k in d:
  print(k,d[k])
#查看用户历史记录功能,标准库collections的deque,双端循环队列,存在内容中,pickle存储到文件
from random import randint
from collections import deque
N = randint(0,100)
history = deque([],5)
def guess(K):
  if K ==N:
   print('正确')
   return True
  if K < N:
   print('%s is less-than N'%K)
  else:
    print("%s is greater-than N"%K)
  return False
while True:
  line = input("请输入一个数字:")
  if line.isdigit():
   k=int(line)
   history.append(k)
   if guess(k):
     break
  elif line =='history' or line =='h?':
    print(list(history))

可迭代对象和迭代器对象:

可迭代与迭代器对象

可迭代对象和迭代器对象

需求:从网络抓取每个城市的气温消息,显示
北京:15-20
黑龙江:3-10
上海13-19
一次抓取所有城市信息,会占很大的存储空间,现在想“用时访问”,吧所有城市气温封装到一个对象里,用for迭代

可迭代对象:

In [1]: l=[1,2,3,4,5]

In [2]: s='abcde'

iter内置函数,可以得到一个迭代器对象
由可迭代对象,得到迭代器

iter(l)

In [23]: type(l)
Out[23]: list

In [24]: type(iter(l))
Out[24]: list_iterator

可迭代对象都有__iter方法,可迭代接口
或者__getitem__序列接口

可迭代对象可以通过next()取值

In [26]: t=iter(l)

In [27]: next(t)
Out[27]: 1

In [28]: next(t)
Out[28]: 2

In [29]: next(t)
Out[29]: 3

In [30]: next(t)
Out[30]: 4

In [31]: next(t)
Out[31]: 5

In [32]: next(t)
---------------------------------------------------------------------------
StopIteration               Traceback (most recent call last)
<ipython-input-32-f843efe259be> in <module>()
----> 1 next(t)

StopIteration:

读写取excel文件

Microsoft Excel是Microsoft为使用Windows和Apple Macintosh操作系统的计算机编写的一款电子表格软件。直观的界面、出色的计算功能和图表工具,再加上成功的市场营销,使Excel成为最流行的个人计算机数据处理软件。

xlrd使用方法

import xlrd
#打开excel文件,创建一个workbook对象,book对象也就是s11.xlsx文件,表含有sheet名
rbook=xlrd.open_workbook('/Users/yuchao/s11.xlsx')
#sheets方法返回对象列表,[<xlrd.sheet.Sheet object at 0x103f147f0>]
rbook.sheets()
rsheet=rbook.sheet_by_index(0)
#访问行数
rows=rsheet.nrows
#访问列数
cols=rsheet.ncols
print('行数:',rows,'列数',cols)
#通过cell的位置坐标取得cell值
cell=rsheet.cell(0,0)
print('0,0坐标的值是:',cell.value)
#取得第二行的值,参数是(行数,起点,终点)
row1=rsheet.row_values(1)
print('第一行的值是:',row1)

xlwt修改excel

# -*- coding:utf-8 -*-
# Author : yuchao
# Data : 2018/7/18 16:08


import xlrd, xlwt

rbook = xlrd.open_workbook('/Users/yuchao/s11.xlsx')
rsheet = rbook.sheet_by_index(0) # 取得sheet对象1
# 列数
nc = rsheet.ncols
# 写入一条数据
rsheet.put_cell(0, nc, xlrd.XL_CELL_TEXT, '总分', None)

# 遍历数据的行数
for row in range(1, rsheet.nrows):
  # 求和每一行数据
  t = sum(rsheet.row_values(row, 1))
  rsheet.put_cell(row, nc, xlrd.XL_CELL_NUMBER, t, None)
#创建文档对象
wbook = xlwt.Workbook()
wsheet = wbook.add_sheet(rsheet.name)
#设置样式
style = xlwt.easyxf('align: vertical center, horizontal center')
#遍历每一行
for r in range(rsheet.nrows):
  #每一列
  for c in range(rsheet.ncols):
    wsheet.write(r,c,rsheet.cell_value(r,c),style)
wbook.save('/Users/yuchao/s11_bak.xlsx')

读取excel

import xlrd
from xlrd.book import Book
from xlrd.sheet import Sheet
from xlrd.sheet import Cell

workbook = xlrd.open_workbook('/Users/yuchao/s11.xlsx')

sheet_names = workbook.sheet_names()

# sheet = workbook.sheet_by_name('工作表1')
sheet = workbook.sheet_by_index(1)

# 循环Excel文件的所有行
for row in sheet.get_rows():
  # 循环一行的所有列
  for col in row:
    # 获取一个单元格中的值
    print(col.value)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python判断直线和矩形是否相交的方法
Jul 14 Python
Python实现生成随机日期字符串的方法示例
Dec 25 Python
利用Django模版生成树状结构实例代码
May 19 Python
Python Selenium 之数据驱动测试的实现
Aug 01 Python
python 列表推导式使用详解
Aug 29 Python
Python中filter与lambda的结合使用详解
Dec 24 Python
python爬虫模拟浏览器访问-User-Agent过程解析
Dec 28 Python
浅析python表达式4+0.5值的数据类型
Feb 26 Python
Python使用tkinter实现摇骰子小游戏功能的代码
Jul 02 Python
python3 os进行嵌套操作的实例讲解
Nov 19 Python
关于python中readlines函数的参数hint的相关知识总结
Jun 24 Python
Python操作CSV格式文件的方法大全
Jul 15 Python
Python SQLAlchemy库的使用方法
Oct 13 #Python
Pycharm github配置实现过程图解
Oct 13 #Python
详解numpy.ndarray.reshape()函数的参数问题
Oct 13 #Python
Python求区间正整数内所有素数之和的方法实例
Oct 13 #Python
python关于倒排列的知识点总结
Oct 13 #Python
Python如何使用ElementTree解析xml
Oct 12 #Python
Django ModelForm组件原理及用法详解
Oct 12 #Python
You might like
星际争霸兵种名称对照表
2020/03/04 星际争霸
php 遍历数据表数据并列表横向排列的代码
2009/09/05 PHP
Erlang的运算符(比较运算符,数值运算符,移位运算符,逻辑运算符)
2012/07/23 PHP
PHP过滤★等特殊符号的正则
2014/01/27 PHP
PHP批量获取网页中所有固定种子链接的方法
2016/11/18 PHP
PHP XML Expat解析器知识点总结
2019/02/15 PHP
JavaScript入门教程(8) Location地址对象
2009/01/31 Javascript
JS 强制设为首页的代码
2009/01/31 Javascript
Nodejs实现多人同时在线移动鼠标的小游戏分享
2014/12/06 NodeJs
jQuery实现带有洗牌效果的动画分页实例
2015/08/31 Javascript
jQuery通过写入cookie实现更换网页背景的方法
2016/04/15 Javascript
浅谈在koa2中实现页面渲染的全局数据
2017/10/09 Javascript
用vue2.0实现点击选中active其他选项互斥的效果
2018/04/12 Javascript
JavaScript轮播停留效果的实现思路
2018/05/24 Javascript
JavaScript实现身份证验证代码实例
2019/08/26 Javascript
[15:56]Heroes18_暗影萨满(完美)
2014/10/31 DOTA
[33:09]完美世界DOTA2联赛循环赛 Forest vs DM BO2第二场 10.29
2020/10/29 DOTA
[55:11]完美世界DOTA2联赛PWL S2 SZ vs LBZS 第一场 11.26
2020/11/30 DOTA
Python处理字符串之isspace()方法的使用
2015/05/19 Python
Python Requests安装与简单运用
2016/04/07 Python
对Pytorch中nn.ModuleList 和 nn.Sequential详解
2019/08/18 Python
python数组循环处理方法
2019/08/26 Python
简单易懂Pytorch实战实例VGG深度网络
2019/08/27 Python
代码总结Python2 和 Python3 字符串的区别
2020/01/28 Python
Python中SQLite如何使用
2020/05/27 Python
pycharm2020.2 配置使用的方法详解
2020/09/16 Python
allbeauty美国:英国在线美容店
2019/03/11 全球购物
简历中自我评价范文3则
2013/12/14 职场文书
党员年度个人总结
2015/02/14 职场文书
团委工作总结2015
2015/04/02 职场文书
2015年加油站工作总结
2015/05/13 职场文书
酒店厨房管理制度
2015/08/06 职场文书
小学数学教学随笔
2015/08/14 职场文书
检讨书格式
2019/04/25 职场文书
新手入门Mysql--概念
2021/06/18 MySQL
使用CSS实现按钮边缘跑马灯动画
2023/05/07 HTML / CSS