python实现最短路径的实例方法


Posted in Python onJuly 19, 2020

最短路径问题(python实现)

解决最短路径问题:(如下三种算法)

(1)迪杰斯特拉算法(Dijkstra算法)
(2)弗洛伊德算法(Floyd算法)
(3)SPFA算法

第一种算法:

Dijkstra算法

广度优先搜索解决赋权有向图或者无向图的单源最短路径问题.是一种贪心的策略

算法的思路

声明一个数组dis来保存源点到各个顶点的最短距离和一个保存已经找到了最短路径的顶点的集合:T,初始时,原点s的路径权重被赋为0(dis[s]=0)。若对于顶点s存在能直接到达的边(s,m),则把dis[m]设为w(s, m),同时把所有其他(s不能直接到达的)顶点的路径长度设为无穷大。初始时,集合T只有顶点s。

然后,从dis数组选择最小值,则该值就是源点s到该值对应的顶点的最短路径,并且把该点加入到T中,OK,此时完成一个顶点,再看看新加入的顶点是否可以到达其他顶点并且看看通过该顶点到达其他点的路径长度是否比源点直接到达短,如果是,那么就替换这些顶点在dis中的值,然后,又从dis中找出最小值,重复上述动作,直到T中包含了图的所有顶点。

第二种算法:

Floyd算法

原理:

Floyd算法(弗洛伊德算法)是一种在有向图中求最短路径的算法。它是一种求解有向图中点与点之间最短路径的算法。
用在拥有负权值的有向图中求解最短路径(不过不能包含负权回路)

流程:

有向图中的每一个节点X,对于图中过的2点A和B,

如果有Dis(AX)+ Dis(XB)< Dis(AB),那么使得Dis(AB)=Dis(AX)+Dis(XB)。

当所有的节点X遍历完后,AB的最短路径就求出来了。

示例一:

#-*- coding:utf-8 -*-
 #python实现Floyd算法
 
N = 4 
_=float('inf')   #无穷大 
 graph = [[ 0, 2, 6, 4],[ _, 0, 3, _],[ 7, _, 0, 1],[ 5, _,12, 0]] 
 path = [[-1,-1,-1,-1],[-1,-1,-1,-1],[-1,-1,-1,-1],[-1,-1,-1,-1]]    #记录路径,最后一次经过的点
def back_path(path,i,j):      #递归回溯
while(-1 != path[i][j]):
   back_path(path,i,path[i][j])
    back_path(path,path[i][j],j)
   print path[i][j],14    
 return;
  return;
print "Graph:\n",graph
for k in range(N):
 for i in range(N):
   for j in range(N):
      if graph[i][j] > graph[i][k] + graph[k][j]:
       graph[i][j] = graph[i][k] + graph[k][j]
      path[i][j] = k
 print "Shortest distance:\n",graph
 print "Path:\n",path
 print "Points pass-by:"
 for i in range(N):
 for j in range(N):
   print "%d -> %d:" % (i,j),
    back_path(path,i,j)
    print "\n",

示例二:

#!usr/bin/env python#encoding:utf-8
'''
功能:使用floyd算法求最短路径距离
'''
import random
import time
def random_matrix_genetor(vex_num=10):  
  '''
  随机图顶点矩阵生成器
  输入:顶点个数,即矩阵维数  
  '''
  data_matrix=[]  
  for i in range(vex_num):
    one_list=[]    
    for j in range(vex_num):
      one_list.append(random.randint(1, 100))
    data_matrix.append(one_list)  
    return data_matrixdef floyd(data_matrix):  
    '''
  输入:原数据矩阵,即:一个二维数组
  输出:顶点间距离  '''
  dist_matrix=[]
  path_matrix=[]
  vex_num=len(data_matrix) 
  for h in range(vex_num):
    one_list=['N']*vex_num
    path_matrix.append(one_list)
    dist_matrix.append(one_list)  
  for i in range(vex_num):    
    for j in range(vex_num):
      dist_matrix=data_matrix
      path_matrix[i][j]=j  
  for k in range(vex_num):    
    for i in range(vex_num):      
      for j in range(vex_num):        
        if dist_matrix[i][k]=='N' or dist_matrix[k][j]=='N':
          temp='N'
        else:
          temp=dist_matrix[i][k]+dist_matrix[k][j]        
        if dist_matrix[i][j]>temp:
          dist_matrix[i][j]=temp
          path_matrix[i][j]=path_matrix[i][k]  
  return dist_matrix, path_matrixdef main_test_func(vex_num=10):  
   '''
   主测试函数
   '''
  data_matrix=random_matrix_genetor(vex_num)
  dist_matrix, path_matrix=floyd(data_matrix)  
  for i in range(vex_num):    
  for j in range(vex_num):      
  print '顶点'+str(i)+'----->'+'顶点'+str(j)+'最小距离为:', dist_matrix[i][j]
if __name__ == '__main__':
  data_matrix=[['N',1,'N',4],[1,'N',2,'N'],['N',2,'N',3],[4,'N',3,'N']]
  dist_matrix, path_matrix=floyd(data_matrix)  
  print dist_matrix  
  print path_matrix
 
  time_list=[] 
  print '------------------------------节点数为10测试情况------------------------------------'
  start_time0=time.time()
  main_test_func(10)
  end_time0=time.time()
  t1=end_time0-start_time0
  time_list.append(t1)  
  print '节点数为10时耗时为:', t1 
  print '------------------------------节点数为100测试情况------------------------------------'
  start_time1=time.time()
  main_test_func(100)
  end_time1=time.time()
  t2=end_time1-start_time1
  time_list.append(t2)  
  print '节点数为100时耗时为:', t2 
  print '------------------------------节点数为1000测试情况------------------------------------'
  start_time1=time.time()
  main_test_func(1000)
  end_time1=time.time()
  t3=end_time1-start_time1
  time_list.append(t3)  
  print '节点数为100时耗时为:', t3 
  print '--------------------------------------时间消耗情况为:--------------------------------'
  for one_time in time_list:    
  print one_time

示例三:

import numpy as np
Max   = 100
v_len  = 4
edge  = np.mat([[0,1,Max,4],[Max,0,9,2],[3,5,0,8],[Max,Max,6,0]])
A    = edge[:]
path  = np.zeros((v_len,v_len)) 
 
def Folyd():  
  for i in range(v_len):    
    for j in range(v_len):      
      if(edge[i,j] != Max and edge[i,j] != 0):
        path[i][j] = i 
  print 'init:'
  print A,'\n',path  
  for a in range(v_len):    
    for b in range(v_len):      
      for c in range(v_len):        
        if(A[b,a]+A[a,c]<A[b,c]):
          A[b,c] = A[b,a]+A[a,c]
          path[b][c] = path[a][c]  
  print 'result:'      
  print A,'\n',path        
 
if __name__ == "__main__":
  Folyd()

第三种算法:

SPFA算法是求解单源最短路径问题的一种算法,由理查德·贝尔曼(Richard Bellman) 和 莱斯特·福特 创立的。有时候这种算法也被称为 Moore-Bellman-Ford 算法,因为 Edward F. Moore 也为这个算法的发展做出了贡献。它的原理是对图进行V-1次松弛操作,得到所有可能的最短路径。

其优于迪科斯彻算法的方面是边的权值可以为负数、实现简单,缺点是时间复杂度过高,高达 O(VE)。但算法可以进行若干种优化,提高了效率。

思路:

我们用数组dis记录每个结点的最短路径估计值,用邻接表或邻接矩阵来存储图G。我们采取的方法是动态逼近法:设立一个先进先出的队列用来保存待优化的结点,优化时每次取出队首结点u,并且用u点当前的最短路径估计值对离开u点所指向的结点v进行松弛操作,如果v点的最短路径估计值有所调整,且v点不在当前的队列中,就将v点放入队尾。这样不断从队列中取出结点来进行松弛操作,直至队列空为止。

Python 相关文章推荐
Python脚本实现格式化css文件
Apr 08 Python
Linux 发邮件磁盘空间监控(python)
Apr 23 Python
python利用正则表达式提取字符串
Dec 08 Python
深入理解NumPy简明教程---数组2
Dec 17 Python
Ubuntu下创建虚拟独立的Python环境全过程
Feb 10 Python
Python操作mongodb的9个步骤
Jun 04 Python
Python操作redis实例小结【String、Hash、List、Set等】
May 16 Python
PyCharm搭建Spark开发环境实现第一个pyspark程序
Jun 13 Python
详解python中docx库的安装过程
Nov 08 Python
关于Python3 lambda函数的深入浅出
Nov 27 Python
Keras设置以及获取权重的实现
Jun 19 Python
Python读取xlsx数据生成图标代码实例
Aug 12 Python
python等待10秒执行下一命令的方法
Jul 19 #Python
python怎么删除缓存文件
Jul 19 #Python
python实现从ftp上下载文件的实例方法
Jul 19 #Python
python中关于数据类型的学习笔记
Jul 19 #Python
Python趣味实例,实现一个简单的抽奖刮刮卡
Jul 18 #Python
用python给csv里的数据排序的具体代码
Jul 17 #Python
python如何删除列为空的行
Jul 17 #Python
You might like
ThinkPHP3.1新特性之内容解析输出详解
2014/06/19 PHP
php中array_multisort对多维数组排序的方法
2020/06/21 PHP
微信公众号实现扫码获取微信用户信息(网页授权)
2019/04/09 PHP
PHP获取远程http或ftp文件的md5值的方法
2019/04/15 PHP
window.open被浏览器拦截后的自定义提示效果代码
2007/11/19 Javascript
jquery下组织javascript代码(js函数化)
2010/08/25 Javascript
jquery实现文本框数量加减功能的例子分享
2014/05/10 Javascript
js/jquery判断浏览器类型的方法小结
2015/05/12 Javascript
js自定义回调函数
2015/12/13 Javascript
jquery自定义右键菜单、全选、不连续选择
2016/03/01 Javascript
js事件驱动机制 浏览器兼容处理方法
2016/07/23 Javascript
jQuery实现的表头固定效果实例【附完整demo源码下载】
2016/08/01 Javascript
js图片轮播手动切换特效
2017/01/12 Javascript
BootStrap selectpicker后台动态绑定数据
2017/06/01 Javascript
前端图片懒加载(lazyload)的实现方法(提高用户体验)
2017/08/21 Javascript
基于JavaScript实现每日签到打卡轨迹功能
2018/11/29 Javascript
微信小程序云开发如何使用云函数生成二维码
2019/05/18 Javascript
详解微信小程序开发(项目从零开始)
2019/06/06 Javascript
用Nodejs实现在终端中炒股的实现
2020/10/18 NodeJs
[56:18]DOTA2上海特级锦标赛主赛事日 - 4 败者组第四轮#2 MVP.Phx VS Fnatic第二局
2016/03/05 DOTA
Python基于scrapy采集数据时使用代理服务器的方法
2015/04/16 Python
Python正则抓取新闻标题和链接的方法示例
2017/04/24 Python
Python实现扩展内置类型的方法分析
2017/10/16 Python
Python实现决策树C4.5算法的示例
2018/05/30 Python
详解opencv中画圆circle函数和椭圆ellipse函数
2019/12/27 Python
python实现飞船大战
2020/04/24 Python
django 装饰器 检测登录状态操作
2020/07/02 Python
python drf各类组件的用法和作用
2021/01/12 Python
蔻驰西班牙官网:COACH西班牙
2019/01/16 全球购物
毕业论文评语大全
2014/04/29 职场文书
2014矛盾纠纷排查调处工作总结
2014/12/09 职场文书
个人原因辞职信模板
2015/05/13 职场文书
退伍军人感言
2015/08/01 职场文书
2019个人工作态度自我评价
2019/04/24 职场文书
教你怎么用Python实现多路径迷宫
2021/04/29 Python
pytorch 两个GPU同时训练的解决方案
2021/06/01 Python