python实现最短路径的实例方法


Posted in Python onJuly 19, 2020

最短路径问题(python实现)

解决最短路径问题:(如下三种算法)

(1)迪杰斯特拉算法(Dijkstra算法)
(2)弗洛伊德算法(Floyd算法)
(3)SPFA算法

第一种算法:

Dijkstra算法

广度优先搜索解决赋权有向图或者无向图的单源最短路径问题.是一种贪心的策略

算法的思路

声明一个数组dis来保存源点到各个顶点的最短距离和一个保存已经找到了最短路径的顶点的集合:T,初始时,原点s的路径权重被赋为0(dis[s]=0)。若对于顶点s存在能直接到达的边(s,m),则把dis[m]设为w(s, m),同时把所有其他(s不能直接到达的)顶点的路径长度设为无穷大。初始时,集合T只有顶点s。

然后,从dis数组选择最小值,则该值就是源点s到该值对应的顶点的最短路径,并且把该点加入到T中,OK,此时完成一个顶点,再看看新加入的顶点是否可以到达其他顶点并且看看通过该顶点到达其他点的路径长度是否比源点直接到达短,如果是,那么就替换这些顶点在dis中的值,然后,又从dis中找出最小值,重复上述动作,直到T中包含了图的所有顶点。

第二种算法:

Floyd算法

原理:

Floyd算法(弗洛伊德算法)是一种在有向图中求最短路径的算法。它是一种求解有向图中点与点之间最短路径的算法。
用在拥有负权值的有向图中求解最短路径(不过不能包含负权回路)

流程:

有向图中的每一个节点X,对于图中过的2点A和B,

如果有Dis(AX)+ Dis(XB)< Dis(AB),那么使得Dis(AB)=Dis(AX)+Dis(XB)。

当所有的节点X遍历完后,AB的最短路径就求出来了。

示例一:

#-*- coding:utf-8 -*-
 #python实现Floyd算法
 
N = 4 
_=float('inf')   #无穷大 
 graph = [[ 0, 2, 6, 4],[ _, 0, 3, _],[ 7, _, 0, 1],[ 5, _,12, 0]] 
 path = [[-1,-1,-1,-1],[-1,-1,-1,-1],[-1,-1,-1,-1],[-1,-1,-1,-1]]    #记录路径,最后一次经过的点
def back_path(path,i,j):      #递归回溯
while(-1 != path[i][j]):
   back_path(path,i,path[i][j])
    back_path(path,path[i][j],j)
   print path[i][j],14    
 return;
  return;
print "Graph:\n",graph
for k in range(N):
 for i in range(N):
   for j in range(N):
      if graph[i][j] > graph[i][k] + graph[k][j]:
       graph[i][j] = graph[i][k] + graph[k][j]
      path[i][j] = k
 print "Shortest distance:\n",graph
 print "Path:\n",path
 print "Points pass-by:"
 for i in range(N):
 for j in range(N):
   print "%d -> %d:" % (i,j),
    back_path(path,i,j)
    print "\n",

示例二:

#!usr/bin/env python#encoding:utf-8
'''
功能:使用floyd算法求最短路径距离
'''
import random
import time
def random_matrix_genetor(vex_num=10):  
  '''
  随机图顶点矩阵生成器
  输入:顶点个数,即矩阵维数  
  '''
  data_matrix=[]  
  for i in range(vex_num):
    one_list=[]    
    for j in range(vex_num):
      one_list.append(random.randint(1, 100))
    data_matrix.append(one_list)  
    return data_matrixdef floyd(data_matrix):  
    '''
  输入:原数据矩阵,即:一个二维数组
  输出:顶点间距离  '''
  dist_matrix=[]
  path_matrix=[]
  vex_num=len(data_matrix) 
  for h in range(vex_num):
    one_list=['N']*vex_num
    path_matrix.append(one_list)
    dist_matrix.append(one_list)  
  for i in range(vex_num):    
    for j in range(vex_num):
      dist_matrix=data_matrix
      path_matrix[i][j]=j  
  for k in range(vex_num):    
    for i in range(vex_num):      
      for j in range(vex_num):        
        if dist_matrix[i][k]=='N' or dist_matrix[k][j]=='N':
          temp='N'
        else:
          temp=dist_matrix[i][k]+dist_matrix[k][j]        
        if dist_matrix[i][j]>temp:
          dist_matrix[i][j]=temp
          path_matrix[i][j]=path_matrix[i][k]  
  return dist_matrix, path_matrixdef main_test_func(vex_num=10):  
   '''
   主测试函数
   '''
  data_matrix=random_matrix_genetor(vex_num)
  dist_matrix, path_matrix=floyd(data_matrix)  
  for i in range(vex_num):    
  for j in range(vex_num):      
  print '顶点'+str(i)+'----->'+'顶点'+str(j)+'最小距离为:', dist_matrix[i][j]
if __name__ == '__main__':
  data_matrix=[['N',1,'N',4],[1,'N',2,'N'],['N',2,'N',3],[4,'N',3,'N']]
  dist_matrix, path_matrix=floyd(data_matrix)  
  print dist_matrix  
  print path_matrix
 
  time_list=[] 
  print '------------------------------节点数为10测试情况------------------------------------'
  start_time0=time.time()
  main_test_func(10)
  end_time0=time.time()
  t1=end_time0-start_time0
  time_list.append(t1)  
  print '节点数为10时耗时为:', t1 
  print '------------------------------节点数为100测试情况------------------------------------'
  start_time1=time.time()
  main_test_func(100)
  end_time1=time.time()
  t2=end_time1-start_time1
  time_list.append(t2)  
  print '节点数为100时耗时为:', t2 
  print '------------------------------节点数为1000测试情况------------------------------------'
  start_time1=time.time()
  main_test_func(1000)
  end_time1=time.time()
  t3=end_time1-start_time1
  time_list.append(t3)  
  print '节点数为100时耗时为:', t3 
  print '--------------------------------------时间消耗情况为:--------------------------------'
  for one_time in time_list:    
  print one_time

示例三:

import numpy as np
Max   = 100
v_len  = 4
edge  = np.mat([[0,1,Max,4],[Max,0,9,2],[3,5,0,8],[Max,Max,6,0]])
A    = edge[:]
path  = np.zeros((v_len,v_len)) 
 
def Folyd():  
  for i in range(v_len):    
    for j in range(v_len):      
      if(edge[i,j] != Max and edge[i,j] != 0):
        path[i][j] = i 
  print 'init:'
  print A,'\n',path  
  for a in range(v_len):    
    for b in range(v_len):      
      for c in range(v_len):        
        if(A[b,a]+A[a,c]<A[b,c]):
          A[b,c] = A[b,a]+A[a,c]
          path[b][c] = path[a][c]  
  print 'result:'      
  print A,'\n',path        
 
if __name__ == "__main__":
  Folyd()

第三种算法:

SPFA算法是求解单源最短路径问题的一种算法,由理查德·贝尔曼(Richard Bellman) 和 莱斯特·福特 创立的。有时候这种算法也被称为 Moore-Bellman-Ford 算法,因为 Edward F. Moore 也为这个算法的发展做出了贡献。它的原理是对图进行V-1次松弛操作,得到所有可能的最短路径。

其优于迪科斯彻算法的方面是边的权值可以为负数、实现简单,缺点是时间复杂度过高,高达 O(VE)。但算法可以进行若干种优化,提高了效率。

思路:

我们用数组dis记录每个结点的最短路径估计值,用邻接表或邻接矩阵来存储图G。我们采取的方法是动态逼近法:设立一个先进先出的队列用来保存待优化的结点,优化时每次取出队首结点u,并且用u点当前的最短路径估计值对离开u点所指向的结点v进行松弛操作,如果v点的最短路径估计值有所调整,且v点不在当前的队列中,就将v点放入队尾。这样不断从队列中取出结点来进行松弛操作,直至队列空为止。

Python 相关文章推荐
使用Python抓取模板之家的CSS模板
Mar 16 Python
Python模拟百度登录实例详解
Jan 20 Python
pygame实现简易飞机大战
Sep 11 Python
python RabbitMQ 使用详细介绍(小结)
Nov 08 Python
Django认证系统实现的web页面实现代码
Aug 12 Python
基于Python新建用户并产生随机密码过程解析
Oct 08 Python
使用Python和百度语音识别生成视频字幕的实现
Apr 09 Python
Python字典取键、值对的方法步骤
Sep 30 Python
python 利用opencv实现图像网络传输
Nov 12 Python
python实现图像随机裁剪的示例代码
Dec 10 Python
python复合条件下的字典排序
Dec 18 Python
Python中的协程(Coroutine)操作模块(greenlet、gevent)
May 30 Python
python等待10秒执行下一命令的方法
Jul 19 #Python
python怎么删除缓存文件
Jul 19 #Python
python实现从ftp上下载文件的实例方法
Jul 19 #Python
python中关于数据类型的学习笔记
Jul 19 #Python
Python趣味实例,实现一个简单的抽奖刮刮卡
Jul 18 #Python
用python给csv里的数据排序的具体代码
Jul 17 #Python
python如何删除列为空的行
Jul 17 #Python
You might like
解析php时间戳与日期的转换
2013/06/06 PHP
php获取汉字首字母的函数
2013/11/07 PHP
Yii操作数据库的3种方法
2014/03/11 PHP
PHP截取IE浏览器并缩小原图的方法
2016/03/04 PHP
JavaScript OOP类与继承
2009/11/15 Javascript
js bind 函数 使用闭包保存执行上下文
2011/12/26 Javascript
jquery的ajax跨域请求原理和示例
2014/05/08 Javascript
实例讲解javascript注册事件处理函数
2016/01/09 Javascript
AngularJS ng-change 指令的详解及简单实例
2016/07/30 Javascript
用Nodejs搭建服务器访问html、css、JS等静态资源文件
2017/04/28 NodeJs
vue.js利用defineProperty实现数据的双向绑定
2017/04/28 Javascript
微信小程序页面开发注意事项整理
2017/05/18 Javascript
jQuery实现打开网页自动弹出遮罩层或点击弹出遮罩层功能示例
2017/10/19 jQuery
js实现登录与注册界面
2017/11/01 Javascript
使用node搭建自动发图文微博机器人的方法
2019/03/22 Javascript
Vue中使用create-keyframe-animation与动画钩子完成复杂动画
2019/04/09 Javascript
node.js使用mongoose操作数据库实现购物车的增、删、改、查功能示例
2019/12/23 Javascript
Element Collapse 折叠面板的使用方法
2020/07/26 Javascript
解决VUE项目localhost端口服务器拒绝连接,只能用127.0.0.1的问题
2020/08/14 Javascript
python实现Floyd算法
2018/01/03 Python
pandas数据框,统计某列数据对应的个数方法
2018/04/11 Python
升级keras解决load_weights()中的未定义skip_mismatch关键字问题
2020/06/12 Python
tensorflow 2.0模式下训练的模型转成 tf1.x 版本的pb模型实例
2020/06/22 Python
Pycharm调试程序技巧小结
2020/08/08 Python
python中判断数字是否为质数的实例讲解
2020/12/06 Python
Canvas 帧动画吃苹果小游戏
2020/08/05 HTML / CSS
联想新加坡官方网站:Lenovo Singapore
2017/10/24 全球购物
在职人员函授期间自我评价分享
2013/11/08 职场文书
中国梦的演讲稿
2014/01/08 职场文书
运动会入场解说词
2014/02/07 职场文书
竞选村长演讲稿
2014/04/28 职场文书
小学校长汇报材料
2014/08/20 职场文书
清明节随笔
2015/08/15 职场文书
JavaCV实现照片马赛克效果
2022/01/22 Java/Android
Java无向树分析 实现最小高度树
2022/04/09 Javascript
Nginx如何配置多个服务域名解析共用80端口详解
2022/09/23 Servers