Python scrapy增量爬取实例及实现过程解析


Posted in Python onDecember 24, 2019

这篇文章主要介绍了Python scrapy增量爬取实例及实现过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

开始接触爬虫的时候还是初学Python的那会,用的还是request、bs4、pandas,再后面接触scrapy做个一两个爬虫,觉得还是框架好,可惜都没有记录都忘记了,现在做推荐系统需要爬取一定的文章,所以又把scrapy捡起来。趁着这次机会做一个记录。

目录如下:

  • 环境
  • 本地窗口调试命令
  • 工程目录
  • xpath选择器
  • 一个简单的增量爬虫示例
  • 配置介绍

环境

​自己的环境下安装scrapy肯定用anaconda(再次强调anaconda的优越性

本地窗口调试与运行

开发的时候可以利用scrapy自带的调试功能进行模拟请求,这样request、response都会与后面代码保持一样。

# 测试请求某网站
scrapy shell URL
# 设置请求头
scrapy shell -s USER_AGENT="Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:61.0) Gecko/20100101 Firefox/61.0" URL

# 指定爬虫内容输出文件格式(json、csv等
scrapy crawl SPIDER_NAME -o FILE_NAME.csv

# 创建爬虫工程
scrapy startproject articles # 在当前目录创建一个scrapy工程

新工程结构介绍

# spiders文件下存放所有爬虫,item.py格式化数据输出
# middlewares.py 设置请求细节(请求头之类的),pipelines.py为数据输出的管道,每一个封装好的item都会经过这里
# settings.py 对工程进行全局设置(存放配置
├── articles
│  ├── articles
│  │  ├── __init__.py
│  │  ├── items.py
│  │  ├── middlewares.py
│  │  ├── pipelines.py
│  │  ├── settings.py
│  │  └── spiders
│  │    ├── healthy_living.py
│  │    ├── __init__.py
│  │    └── people_health.py
│  └── scrapy.cfg
├── README.en.md
└── README.md

页面解析神器——Xpath选择器

scrapy自带xpath选择器,很方便,简单介绍一些常用的

# 全站爬取神器--LinkExtractor,可以自动获取该标签下的所有url跟text(因为网站结构大都一个套路
from scrapy.linkextractors import LinkExtractor
le = LinkExtractor(restrict_xpaths="//ul[@class='nav2_UL_1 clearFix']")# 返回一个迭代器,通过循环(for i in le),可获取url(i.url) (i.text)

# 获取属性class为所有aa的div标签内容中的内容
response.xpath("//div[@class='aa']/text()").extract()    # '//'代表获取所有,'/'代表获取第一个,类似的可以找属性为ul的其它标签

# 获取内容包含“下一页”的所有a标签中包含的链接(提取下一页链接神器
response.xpath("//a[contains(text(),'下一页')]/@href").extract()

一个简单的增量爬取示例

这里增量爬取的思想很简单:目标网站的数据都是按照时间排列的,所以在对某个连接进行request之前,先查询数据库中有没有这条数据,如果有,就停止爬虫,如果没有发起请求

class HealthyLiving(scrapy.Spider):
  # 一定要一个全局唯一的爬虫名称,命令行启动的时候需要指定该名称
  name = "healthy_living"
  # 指定爬虫入口,scrapy支持多入口,所以一定是lis形式
  start_urls = ['http://www.jkb.com.cn/healthyLiving/']

  '''
  抓取大类标签入口
  '''
  def parse(self, response):
    le = LinkExtractor(restrict_xpaths="//ul[@class='nav2_UL_1 clearFix']")
    for link in le.extract_links(response)[1:-1]:
      tag = link.text
      # 将这一级提取到的信息,通过请求头传递给下一级(这里是为了给数据打标签
      meta = {"tag": tag}
      # 依次解析每一个链接,并传递到下一级进行继续爬取
      yield scrapy.Request(link.url, callback=self.parse_articles, meta=meta)

  '''
  抓取页面内的文章链接及下一页链接
  '''
  def parse_articles(self, response):
    # 接收上一级传递的信息
    meta = response.meta
    article_links = response.xpath("//div[@class='txt']/h4/a/@href").extract()
    for link in article_links:
      res = self.collection.find_one({"article_url": link}, {"article_url": 1})
      full_meta = dict(meta)
      # 将文章链接传入下一级
      full_meta.update({"article_url": link})
      if res is None:
        yield scrapy.Request(link, callback=self.parse_article, meta=full_meta)
      else:
        return
    next_page = response.xpath("//div[@class='page']//a[contains(text(),'»')]/@href").extract()[0]
    if next_page:
      yield scrapy.Request(next_page, callback=self.parse_articles, meta=meta)

# 最后解析页面,并输出
  def parse_article(self, response):
   # 从item.py中导入数据封装格式
    article_item = ArticlesItem()
    meta = response.meta
    # 利用xpath提取页面信息并封装成item
    try:
      article_item["tag"] = ""
      # ... 省略
    finally:
      yield article_item

工程配置介绍

设置请求头、配置数据库

# 设置请求头,在middlewares.py中设定,在settings.py中启用
class RandomUA(object):
  user_agents = [
      "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit"
      "/537.36 (KHTML, like Gecko) Chrome/39.0.2171.71 Safari/537.36",
      "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.11 (KHTML, like Gecko) Chrome/23.0.1271.64 Safari/537.11",
      "Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US) AppleWebKit"
      "/534.16 (KHTML, like Gecko) Chrome/10.0.648.133 Safari/534.16"
    ]

  def process_request(self, request, spider):
    request.headers["User-Agent"] = random.choice(self.user_agents)


# 设置数据入库处理,在pipeline.py进行配置,在settings.py进行启用
class MongoPipeline(object):
  def __init__(self, mongo_uri, mongo_db):
    self.mongo_uri = mongo_uri
    self.mongo_db = mongo_db

  @classmethod
  def from_crawler(cls, crawler):
    return cls(
      mongo_uri=crawler.settings.get('MONGO_URI'),
      mongo_db=crawler.settings.get('MONGO_DB')
    )

  def open_spider(self, spider):
    print("开始爬取", datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'))
    self.client = pymongo.MongoClient(self.mongo_uri)
    self.db = self.client[self.mongo_db]

  def process_item(self, item, spider):
    data = self.db[item.collection].find_one({"title": item["title"], "date": item["date"]})

    if data is None:
      self.db[item.collection].insert(dict(item))
    # else:
    #   self.close_spider(self, spider)
    return item

  def close_spider(self, spider):
    print("爬取结束", datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'))
    self.client.close()
# 在settings.py启动:请求头的修改,数据库的配置
DOWNLOADER_MIDDLEWARES = {
  # 'articles.middlewares.ArticlesDownloaderMiddleware': 543,
  'articles.middlewares.RandomUA': 543,# 543代表优先级,数字越低优先级越高
}

ITEM_PIPELINES = {
  'articles.pipelines.MongoPipeline': 300,
}

# 一些其它配置
ROBOTSTXT_OBEY = True # 是否遵守网站的robot协议
FEED_EXPORT_ENCODING = 'utf-8' # 指定数据输出的编码格式
## 数据库配置
MONGO_URI = ''
MONGO_DB = ''
MONGO_PORT = 27017
MONGO_COLLECTION = ''

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
windows下wxPython开发环境安装与配置方法
Jun 28 Python
Python获取Windows或Linux主机名称通用函数分享
Nov 22 Python
Python编程实现输入某年某月某日计算出这一天是该年第几天的方法
Apr 18 Python
python中defaultdict的用法详解
Jun 07 Python
更改Python的pip install 默认安装依赖路径方法详解
Oct 27 Python
python双向链表原理与实现方法详解
Dec 03 Python
pytorch 中pad函数toch.nn.functional.pad()的用法
Jan 08 Python
Python3.7实现验证码登录方式代码实例
Feb 14 Python
Python如何通过百度翻译API实现翻译功能
Apr 02 Python
python 如何引入协程和原理分析
Nov 30 Python
PyTorch中clone()、detach()及相关扩展详解
Dec 09 Python
python创建字典及相关管理操作
Apr 13 Python
Python 元组拆包示例(Tuple Unpacking)
Dec 24 #Python
Python 余弦相似度与皮尔逊相关系数 计算实例
Dec 23 #Python
Python编译成.so文件进行加密后调用的实现
Dec 23 #Python
Cython编译python为so 代码加密示例
Dec 23 #Python
Python编译为二进制so可执行文件实例
Dec 23 #Python
Python+opencv+pyaudio实现带声音屏幕录制
Dec 23 #Python
python 实现屏幕录制示例
Dec 23 #Python
You might like
PHP时间戳使用实例代码
2008/06/07 PHP
深入PHP获取随机数字和字母的方法详解
2013/06/06 PHP
PHP中的表达式简述
2016/05/29 PHP
如何在Web页面上直接打开、编辑、创建Office文档
2007/03/12 Javascript
动态修改DOM 里面的 id 属性的弊端分析
2008/09/03 Javascript
取选中的radio的值
2010/01/11 Javascript
JavaScript 面向对象之命名空间
2010/05/04 Javascript
Jquery 获取checkbox的checked问题
2011/11/16 Javascript
javascript的数据类型、字面量、变量介绍
2012/05/23 Javascript
js iframe跨域访问(同主域/非同主域)分别深入介绍
2013/01/24 Javascript
javascript 判断字符串是否包含某字符串及indexOf使用示例
2013/10/18 Javascript
Jquery 模拟用户点击超链接或者按钮的方法
2013/10/25 Javascript
JS实现选项卡实例详解
2015/11/17 Javascript
JS实现图片的不间断连续滚动的简单实例
2016/06/03 Javascript
完美的js div拖拽实例代码
2016/09/24 Javascript
Javascript Function.prototype.bind详细分析
2016/12/29 Javascript
解决VUE mounted 钩子函数执行时 img 未加载导致页面布局的问题
2020/07/27 Javascript
python根据unicode判断语言类型实例代码
2018/01/17 Python
django表单实现下拉框的示例讲解
2018/05/29 Python
python实现信号时域统计特征提取代码
2020/02/26 Python
关于Python Tkinter Button控件command传参问题的解决方式
2020/03/04 Python
pycharm实现在子类中添加一个父类没有的属性
2020/03/12 Python
python实现扑克牌交互式界面发牌程序
2020/04/22 Python
德国内衣、泳装和睡衣网上商店:Bigsize Dessous
2018/07/09 全球购物
Mamaearth官方网站:印度母婴护理产品公司
2019/10/06 全球购物
广州品高软件.net笔面试题目
2012/04/18 面试题
审计工作个人的自我评价
2013/12/25 职场文书
生日寿宴答谢词
2014/01/19 职场文书
建设投标担保书
2014/05/13 职场文书
好听的队名和口号
2014/06/09 职场文书
人民调解协议书范本
2014/10/11 职场文书
2015年中秋节活动总结
2015/03/23 职场文书
大学开学典礼新闻稿
2015/07/17 职场文书
银行中层干部培训心得体会
2016/01/11 职场文书
MySQL中IF()、IFNULL()、NULLIF()、ISNULL()函数的使用详解
2021/06/26 MySQL
CSS实现背景图片全屏铺满自适应的3种方式
2022/07/07 HTML / CSS