Python scrapy增量爬取实例及实现过程解析


Posted in Python onDecember 24, 2019

这篇文章主要介绍了Python scrapy增量爬取实例及实现过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

开始接触爬虫的时候还是初学Python的那会,用的还是request、bs4、pandas,再后面接触scrapy做个一两个爬虫,觉得还是框架好,可惜都没有记录都忘记了,现在做推荐系统需要爬取一定的文章,所以又把scrapy捡起来。趁着这次机会做一个记录。

目录如下:

  • 环境
  • 本地窗口调试命令
  • 工程目录
  • xpath选择器
  • 一个简单的增量爬虫示例
  • 配置介绍

环境

​自己的环境下安装scrapy肯定用anaconda(再次强调anaconda的优越性

本地窗口调试与运行

开发的时候可以利用scrapy自带的调试功能进行模拟请求,这样request、response都会与后面代码保持一样。

# 测试请求某网站
scrapy shell URL
# 设置请求头
scrapy shell -s USER_AGENT="Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:61.0) Gecko/20100101 Firefox/61.0" URL

# 指定爬虫内容输出文件格式(json、csv等
scrapy crawl SPIDER_NAME -o FILE_NAME.csv

# 创建爬虫工程
scrapy startproject articles # 在当前目录创建一个scrapy工程

新工程结构介绍

# spiders文件下存放所有爬虫,item.py格式化数据输出
# middlewares.py 设置请求细节(请求头之类的),pipelines.py为数据输出的管道,每一个封装好的item都会经过这里
# settings.py 对工程进行全局设置(存放配置
├── articles
│  ├── articles
│  │  ├── __init__.py
│  │  ├── items.py
│  │  ├── middlewares.py
│  │  ├── pipelines.py
│  │  ├── settings.py
│  │  └── spiders
│  │    ├── healthy_living.py
│  │    ├── __init__.py
│  │    └── people_health.py
│  └── scrapy.cfg
├── README.en.md
└── README.md

页面解析神器——Xpath选择器

scrapy自带xpath选择器,很方便,简单介绍一些常用的

# 全站爬取神器--LinkExtractor,可以自动获取该标签下的所有url跟text(因为网站结构大都一个套路
from scrapy.linkextractors import LinkExtractor
le = LinkExtractor(restrict_xpaths="//ul[@class='nav2_UL_1 clearFix']")# 返回一个迭代器,通过循环(for i in le),可获取url(i.url) (i.text)

# 获取属性class为所有aa的div标签内容中的内容
response.xpath("//div[@class='aa']/text()").extract()    # '//'代表获取所有,'/'代表获取第一个,类似的可以找属性为ul的其它标签

# 获取内容包含“下一页”的所有a标签中包含的链接(提取下一页链接神器
response.xpath("//a[contains(text(),'下一页')]/@href").extract()

一个简单的增量爬取示例

这里增量爬取的思想很简单:目标网站的数据都是按照时间排列的,所以在对某个连接进行request之前,先查询数据库中有没有这条数据,如果有,就停止爬虫,如果没有发起请求

class HealthyLiving(scrapy.Spider):
  # 一定要一个全局唯一的爬虫名称,命令行启动的时候需要指定该名称
  name = "healthy_living"
  # 指定爬虫入口,scrapy支持多入口,所以一定是lis形式
  start_urls = ['http://www.jkb.com.cn/healthyLiving/']

  '''
  抓取大类标签入口
  '''
  def parse(self, response):
    le = LinkExtractor(restrict_xpaths="//ul[@class='nav2_UL_1 clearFix']")
    for link in le.extract_links(response)[1:-1]:
      tag = link.text
      # 将这一级提取到的信息,通过请求头传递给下一级(这里是为了给数据打标签
      meta = {"tag": tag}
      # 依次解析每一个链接,并传递到下一级进行继续爬取
      yield scrapy.Request(link.url, callback=self.parse_articles, meta=meta)

  '''
  抓取页面内的文章链接及下一页链接
  '''
  def parse_articles(self, response):
    # 接收上一级传递的信息
    meta = response.meta
    article_links = response.xpath("//div[@class='txt']/h4/a/@href").extract()
    for link in article_links:
      res = self.collection.find_one({"article_url": link}, {"article_url": 1})
      full_meta = dict(meta)
      # 将文章链接传入下一级
      full_meta.update({"article_url": link})
      if res is None:
        yield scrapy.Request(link, callback=self.parse_article, meta=full_meta)
      else:
        return
    next_page = response.xpath("//div[@class='page']//a[contains(text(),'»')]/@href").extract()[0]
    if next_page:
      yield scrapy.Request(next_page, callback=self.parse_articles, meta=meta)

# 最后解析页面,并输出
  def parse_article(self, response):
   # 从item.py中导入数据封装格式
    article_item = ArticlesItem()
    meta = response.meta
    # 利用xpath提取页面信息并封装成item
    try:
      article_item["tag"] = ""
      # ... 省略
    finally:
      yield article_item

工程配置介绍

设置请求头、配置数据库

# 设置请求头,在middlewares.py中设定,在settings.py中启用
class RandomUA(object):
  user_agents = [
      "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit"
      "/537.36 (KHTML, like Gecko) Chrome/39.0.2171.71 Safari/537.36",
      "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.11 (KHTML, like Gecko) Chrome/23.0.1271.64 Safari/537.11",
      "Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US) AppleWebKit"
      "/534.16 (KHTML, like Gecko) Chrome/10.0.648.133 Safari/534.16"
    ]

  def process_request(self, request, spider):
    request.headers["User-Agent"] = random.choice(self.user_agents)


# 设置数据入库处理,在pipeline.py进行配置,在settings.py进行启用
class MongoPipeline(object):
  def __init__(self, mongo_uri, mongo_db):
    self.mongo_uri = mongo_uri
    self.mongo_db = mongo_db

  @classmethod
  def from_crawler(cls, crawler):
    return cls(
      mongo_uri=crawler.settings.get('MONGO_URI'),
      mongo_db=crawler.settings.get('MONGO_DB')
    )

  def open_spider(self, spider):
    print("开始爬取", datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'))
    self.client = pymongo.MongoClient(self.mongo_uri)
    self.db = self.client[self.mongo_db]

  def process_item(self, item, spider):
    data = self.db[item.collection].find_one({"title": item["title"], "date": item["date"]})

    if data is None:
      self.db[item.collection].insert(dict(item))
    # else:
    #   self.close_spider(self, spider)
    return item

  def close_spider(self, spider):
    print("爬取结束", datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'))
    self.client.close()
# 在settings.py启动:请求头的修改,数据库的配置
DOWNLOADER_MIDDLEWARES = {
  # 'articles.middlewares.ArticlesDownloaderMiddleware': 543,
  'articles.middlewares.RandomUA': 543,# 543代表优先级,数字越低优先级越高
}

ITEM_PIPELINES = {
  'articles.pipelines.MongoPipeline': 300,
}

# 一些其它配置
ROBOTSTXT_OBEY = True # 是否遵守网站的robot协议
FEED_EXPORT_ENCODING = 'utf-8' # 指定数据输出的编码格式
## 数据库配置
MONGO_URI = ''
MONGO_DB = ''
MONGO_PORT = 27017
MONGO_COLLECTION = ''

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python装饰器初探(推荐)
Jul 21 Python
Python基于回溯法子集树模板解决马踏棋盘问题示例
Sep 11 Python
Python程序员面试题 你必须提前准备!
Jan 16 Python
用python 批量更改图像尺寸到统一大小的方法
Mar 31 Python
tensorflow实现简单的卷积神经网络
May 24 Python
Python3将数据保存为txt文件的方法
Sep 12 Python
pyqt5 QlistView列表显示的实现示例
Mar 24 Python
用python实现学生管理系统
Jul 24 Python
python简单利用字典破解zip文件口令
Sep 07 Python
详解向scrapy中的spider传递参数的几种方法(2种)
Sep 28 Python
python用字节处理文件实例讲解
Apr 13 Python
Python使用OpenCV实现虚拟缩放效果
Feb 28 Python
Python 元组拆包示例(Tuple Unpacking)
Dec 24 #Python
Python 余弦相似度与皮尔逊相关系数 计算实例
Dec 23 #Python
Python编译成.so文件进行加密后调用的实现
Dec 23 #Python
Cython编译python为so 代码加密示例
Dec 23 #Python
Python编译为二进制so可执行文件实例
Dec 23 #Python
Python+opencv+pyaudio实现带声音屏幕录制
Dec 23 #Python
python 实现屏幕录制示例
Dec 23 #Python
You might like
PHP fgetcsv 定义和用法(附windows与linux下兼容问题)
2012/05/29 PHP
Yii中表单用法实例详解
2016/01/05 PHP
PHP使用http_build_query()构造URL字符串的方法
2016/04/02 PHP
PHP微信红包生成代码分享
2016/10/06 PHP
PHP7扩展开发教程之Hello World实现方法示例
2017/08/03 PHP
javascript 网页跳转的方法
2008/12/24 Javascript
jQuery 树形结构的选择器
2010/02/15 Javascript
一个js的tab切换效果代码[代码分离]
2010/04/11 Javascript
jQuery中unwrap()方法用法实例
2015/01/16 Javascript
js实现当复选框选择匿名登录时隐藏登录框效果
2015/08/14 Javascript
深入理解JS中的substr和substring
2016/04/26 Javascript
ionic js 复选框 与普通的 HTML 复选框到底有没区别
2016/06/06 Javascript
功能强大的Bootstrap使用手册(一)
2016/08/02 Javascript
NodeJS 将文件夹按照存放路径变成一个对应的JSON的方法
2018/10/17 NodeJs
Vue2.0实现组件之间数据交互和通信操作示例
2019/05/16 Javascript
[05:20]卡尔工作室_DOTA2新手教学_DOTA2超强新手功能
2013/04/22 DOTA
python使用opencv按一定间隔截取视频帧
2018/03/06 Python
python MySQLdb使用教程详解
2018/03/20 Python
详解【python】str与json类型转换
2019/04/29 Python
Flask框架中request、请求钩子、上下文用法分析
2019/07/23 Python
Python拆分大型CSV文件代码实例
2019/10/07 Python
浅谈keras使用预训练模型vgg16分类,损失和准确度不变
2020/07/02 Python
No module named ‘win32gui‘ 的解决方法(踩坑之旅)
2021/02/18 Python
Python使用cn2an实现中文数字与阿拉伯数字的相互转换
2021/03/02 Python
中外合拍动画首获奥斯卡提名,“上海出品”《飞奔去月球》能否拿下最终大奖?
2021/03/16 国漫
THE OUTNET美国官网:国际设计师品牌折扣网站
2017/03/07 全球购物
Bogner美国官网:滑雪服中的”Dior”
2018/01/30 全球购物
北京泡泡网网络有限公司.net面试题
2012/07/17 面试题
北京某科技有限公司C# .net笔试题
2014/09/27 面试题
节能减耗标语
2014/06/21 职场文书
管理岗位竞聘演讲稿
2014/08/18 职场文书
基层党支部承诺书
2015/04/30 职场文书
会议营销主持词
2015/07/03 职场文书
新闻报道稿范文
2015/07/23 职场文书
离职告别感言
2015/08/04 职场文书
关于Numpy之repeat、tile的用法总结
2021/06/02 Python