Python scrapy增量爬取实例及实现过程解析


Posted in Python onDecember 24, 2019

这篇文章主要介绍了Python scrapy增量爬取实例及实现过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

开始接触爬虫的时候还是初学Python的那会,用的还是request、bs4、pandas,再后面接触scrapy做个一两个爬虫,觉得还是框架好,可惜都没有记录都忘记了,现在做推荐系统需要爬取一定的文章,所以又把scrapy捡起来。趁着这次机会做一个记录。

目录如下:

  • 环境
  • 本地窗口调试命令
  • 工程目录
  • xpath选择器
  • 一个简单的增量爬虫示例
  • 配置介绍

环境

​自己的环境下安装scrapy肯定用anaconda(再次强调anaconda的优越性

本地窗口调试与运行

开发的时候可以利用scrapy自带的调试功能进行模拟请求,这样request、response都会与后面代码保持一样。

# 测试请求某网站
scrapy shell URL
# 设置请求头
scrapy shell -s USER_AGENT="Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:61.0) Gecko/20100101 Firefox/61.0" URL

# 指定爬虫内容输出文件格式(json、csv等
scrapy crawl SPIDER_NAME -o FILE_NAME.csv

# 创建爬虫工程
scrapy startproject articles # 在当前目录创建一个scrapy工程

新工程结构介绍

# spiders文件下存放所有爬虫,item.py格式化数据输出
# middlewares.py 设置请求细节(请求头之类的),pipelines.py为数据输出的管道,每一个封装好的item都会经过这里
# settings.py 对工程进行全局设置(存放配置
├── articles
│  ├── articles
│  │  ├── __init__.py
│  │  ├── items.py
│  │  ├── middlewares.py
│  │  ├── pipelines.py
│  │  ├── settings.py
│  │  └── spiders
│  │    ├── healthy_living.py
│  │    ├── __init__.py
│  │    └── people_health.py
│  └── scrapy.cfg
├── README.en.md
└── README.md

页面解析神器——Xpath选择器

scrapy自带xpath选择器,很方便,简单介绍一些常用的

# 全站爬取神器--LinkExtractor,可以自动获取该标签下的所有url跟text(因为网站结构大都一个套路
from scrapy.linkextractors import LinkExtractor
le = LinkExtractor(restrict_xpaths="//ul[@class='nav2_UL_1 clearFix']")# 返回一个迭代器,通过循环(for i in le),可获取url(i.url) (i.text)

# 获取属性class为所有aa的div标签内容中的内容
response.xpath("//div[@class='aa']/text()").extract()    # '//'代表获取所有,'/'代表获取第一个,类似的可以找属性为ul的其它标签

# 获取内容包含“下一页”的所有a标签中包含的链接(提取下一页链接神器
response.xpath("//a[contains(text(),'下一页')]/@href").extract()

一个简单的增量爬取示例

这里增量爬取的思想很简单:目标网站的数据都是按照时间排列的,所以在对某个连接进行request之前,先查询数据库中有没有这条数据,如果有,就停止爬虫,如果没有发起请求

class HealthyLiving(scrapy.Spider):
  # 一定要一个全局唯一的爬虫名称,命令行启动的时候需要指定该名称
  name = "healthy_living"
  # 指定爬虫入口,scrapy支持多入口,所以一定是lis形式
  start_urls = ['http://www.jkb.com.cn/healthyLiving/']

  '''
  抓取大类标签入口
  '''
  def parse(self, response):
    le = LinkExtractor(restrict_xpaths="//ul[@class='nav2_UL_1 clearFix']")
    for link in le.extract_links(response)[1:-1]:
      tag = link.text
      # 将这一级提取到的信息,通过请求头传递给下一级(这里是为了给数据打标签
      meta = {"tag": tag}
      # 依次解析每一个链接,并传递到下一级进行继续爬取
      yield scrapy.Request(link.url, callback=self.parse_articles, meta=meta)

  '''
  抓取页面内的文章链接及下一页链接
  '''
  def parse_articles(self, response):
    # 接收上一级传递的信息
    meta = response.meta
    article_links = response.xpath("//div[@class='txt']/h4/a/@href").extract()
    for link in article_links:
      res = self.collection.find_one({"article_url": link}, {"article_url": 1})
      full_meta = dict(meta)
      # 将文章链接传入下一级
      full_meta.update({"article_url": link})
      if res is None:
        yield scrapy.Request(link, callback=self.parse_article, meta=full_meta)
      else:
        return
    next_page = response.xpath("//div[@class='page']//a[contains(text(),'»')]/@href").extract()[0]
    if next_page:
      yield scrapy.Request(next_page, callback=self.parse_articles, meta=meta)

# 最后解析页面,并输出
  def parse_article(self, response):
   # 从item.py中导入数据封装格式
    article_item = ArticlesItem()
    meta = response.meta
    # 利用xpath提取页面信息并封装成item
    try:
      article_item["tag"] = ""
      # ... 省略
    finally:
      yield article_item

工程配置介绍

设置请求头、配置数据库

# 设置请求头,在middlewares.py中设定,在settings.py中启用
class RandomUA(object):
  user_agents = [
      "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit"
      "/537.36 (KHTML, like Gecko) Chrome/39.0.2171.71 Safari/537.36",
      "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.11 (KHTML, like Gecko) Chrome/23.0.1271.64 Safari/537.11",
      "Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US) AppleWebKit"
      "/534.16 (KHTML, like Gecko) Chrome/10.0.648.133 Safari/534.16"
    ]

  def process_request(self, request, spider):
    request.headers["User-Agent"] = random.choice(self.user_agents)


# 设置数据入库处理,在pipeline.py进行配置,在settings.py进行启用
class MongoPipeline(object):
  def __init__(self, mongo_uri, mongo_db):
    self.mongo_uri = mongo_uri
    self.mongo_db = mongo_db

  @classmethod
  def from_crawler(cls, crawler):
    return cls(
      mongo_uri=crawler.settings.get('MONGO_URI'),
      mongo_db=crawler.settings.get('MONGO_DB')
    )

  def open_spider(self, spider):
    print("开始爬取", datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'))
    self.client = pymongo.MongoClient(self.mongo_uri)
    self.db = self.client[self.mongo_db]

  def process_item(self, item, spider):
    data = self.db[item.collection].find_one({"title": item["title"], "date": item["date"]})

    if data is None:
      self.db[item.collection].insert(dict(item))
    # else:
    #   self.close_spider(self, spider)
    return item

  def close_spider(self, spider):
    print("爬取结束", datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'))
    self.client.close()
# 在settings.py启动:请求头的修改,数据库的配置
DOWNLOADER_MIDDLEWARES = {
  # 'articles.middlewares.ArticlesDownloaderMiddleware': 543,
  'articles.middlewares.RandomUA': 543,# 543代表优先级,数字越低优先级越高
}

ITEM_PIPELINES = {
  'articles.pipelines.MongoPipeline': 300,
}

# 一些其它配置
ROBOTSTXT_OBEY = True # 是否遵守网站的robot协议
FEED_EXPORT_ENCODING = 'utf-8' # 指定数据输出的编码格式
## 数据库配置
MONGO_URI = ''
MONGO_DB = ''
MONGO_PORT = 27017
MONGO_COLLECTION = ''

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python 中文字符串的处理实现代码
Oct 25 Python
python判断端口是否打开的实现代码
Feb 10 Python
Python实例之wxpython中Frame使用方法
Jun 09 Python
python简单判断序列是否为空的方法
Jun 30 Python
使用Python对MySQL数据操作
Apr 06 Python
python实现单线程多任务非阻塞TCP服务端
Jun 13 Python
PyCharm设置护眼背景色的方法
Oct 29 Python
python实现一个简单的ping工具方法
Jan 31 Python
Python 线程池用法简单示例
Oct 02 Python
python实现密码强度校验
Mar 18 Python
jupyter notebook 添加kernel permission denied的操作
Apr 21 Python
python如何实现word批量转HTML
Sep 30 Python
Python 元组拆包示例(Tuple Unpacking)
Dec 24 #Python
Python 余弦相似度与皮尔逊相关系数 计算实例
Dec 23 #Python
Python编译成.so文件进行加密后调用的实现
Dec 23 #Python
Cython编译python为so 代码加密示例
Dec 23 #Python
Python编译为二进制so可执行文件实例
Dec 23 #Python
Python+opencv+pyaudio实现带声音屏幕录制
Dec 23 #Python
python 实现屏幕录制示例
Dec 23 #Python
You might like
解析PHP无限级分类方法及代码
2013/06/21 PHP
实例解析php的数据类型
2018/10/24 PHP
javascript 控制弹出窗口
2007/04/10 Javascript
被jQuery折腾得半死,揭秘为何jQuery为何在IE/Firefox下均无法使用
2010/01/22 Javascript
推荐30个新鲜出炉的精美 jQuery 效果
2012/03/26 Javascript
原生JS实现加入收藏夹的代码
2013/10/24 Javascript
jQuery动态显示和隐藏datagrid中的某一列的方法
2013/12/11 Javascript
JavaScript调用ajax获取文本文件内容实现代码
2014/03/28 Javascript
javascript 获取HTML DOM父、子、临近节点
2014/06/16 Javascript
jquery点击切换背景色的简单实例
2016/08/25 Javascript
Node.js开发教程之基于OnceIO框架实现文件上传和验证功能
2016/11/30 Javascript
基于Vue2.0的分页组件
2017/03/16 Javascript
Angular使用$http.jsonp发送跨站请求的方法
2017/03/16 Javascript
Angular实现响应式表单
2017/08/04 Javascript
在vue项目中引入highcharts图表的方法(详解)
2018/03/05 Javascript
vue使用v-for实现hover点击效果
2018/09/29 Javascript
微信上传视频文件提示(推荐)
2018/11/22 Javascript
bootstrap table插件动态加载表头
2019/07/19 Javascript
如何HttpServletRequest文件对象并储存
2020/08/14 Javascript
Python下的subprocess模块的入门指引
2015/04/16 Python
Python 专题三 字符串的基础知识
2017/03/19 Python
python中的计时器timeit的使用方法
2017/10/20 Python
Python中的默认参数实例分析
2018/01/29 Python
django多种支付、并发订单处理实例代码
2019/12/13 Python
从零开始的TensorFlow+VScode开发环境搭建的步骤(图文)
2020/08/31 Python
python中requests模拟登录的三种方式(携带cookie/session进行请求网站)
2020/11/17 Python
SmartBuyGlasses丹麦:网上购买名牌太阳镜、眼镜和隐形眼镜
2016/10/01 全球购物
土耳其风格手工珠宝:Ottoman Hands
2019/07/26 全球购物
马德里运动鞋商店:Nigra Mercato
2020/02/16 全球购物
杭州时比特电子有限公司SQL
2013/08/22 面试题
餐厅楼面主管岗位职责范本
2014/02/16 职场文书
2014年向国旗敬礼活动方案
2014/09/27 职场文书
2014年后勤管理工作总结
2014/12/01 职场文书
销售经理助理岗位职责
2015/04/13 职场文书
工资证明范本
2015/06/12 职场文书
Python趣味实战之手把手教你实现举牌小人生成器
2021/06/07 Python