Tensor转为numpy
np.array(Tensor)
numpy转换为Tensor
torch.Tensor(numpy.darray)
PIL.Image.Image转换成numpy
np.array(PIL.Image.Image)
numpy 转换成PIL.Image.Image
Image.fromarray(numpy.ndarray)
首先需要保证numpy.ndarray 转换成np.uint8型
numpy.astype(np.uint8),像素值[0,255]。
同时灰度图像保证numpy.shape为(H,W),不能出现channels
这里需要np.squeeze()。彩色图象保证numpy.shape为(H,W,3)
之后Image.fromarray(numpy.ndarray)
PIL.Image.Image转换成Tensor
torchvision.transfrom
img=Image.open('00381fa010_940422.tif').convert('L') import torchvision.transforms as transforms trans=transforms.Compose([transforms.ToTensor()]) a=trans(img)
Tensor转化成PIL.Image.Image
先转换成numpy,再转换成PIL.Image.Image
灰度图像
img=Image.open('00381fa010_940422.tif').convert('L') import torchvision.transforms as transforms trans=transforms.Compose([transforms.ToTensor()]) a=trans(img) b=np.array(a) #b.shape (1,64,64) maxi=b.max() b=b*255./maxi b=b.transpose(1,2,0).astype(np.uint8) b=np.squeeze(b,axis=2) xx=Image.fromarray(b) xx
彩色图象
img2=Image.open('00381fa010_940422.tif').convert('RGB') import torchvision.transforms as transforms trans=transforms.Compose([transforms.ToTensor()]) a=trans(img2) a=np.array(a) maxi=a.max() a=a/maxi*255 a=a.transpose(1,2,0).astype(np.uint8) b=Image.fromarray(a) b
python-opencv
import cv2 a=cv2.imread('00381fa010_940422.tif') #a.shape (64,64,3) cv2.imwrite('asd.jpg',a) Image.fromarray(a) b=cv2.imread('00381fa010_940422.tif',0)#b.shape (64,64) Image.fromarray(b)
cv2.imread()返回numpy.darray, 读取灰度图像之后shape为(64,64),RGB图像的shape为(64,64,3),可直接用Image.fromarray()转换成Image。
cv写图像时,灰度图像shape可以为(H,W)或(H,W,1)。彩色图像(H,W,3)
要从numpy.ndarray得到PIL.Image.Image,灰度图的shape必须为(H,W),彩色为(H,W,3)
对于Variable类型不能直接转换成numpy.ndarray,需要用.data转换
np.array(a.data)
以上这篇python、PyTorch图像读取与numpy转换实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。
python、PyTorch图像读取与numpy转换实例
- Author -
PoemK声明:登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。
Reply on: @reply_date@
@reply_contents@