Python基于WordCloud制作词云图


Posted in Python onNovember 29, 2019

这篇文章主要介绍了python基于WordCloud制作词云图,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

1. 导入需要的包package

import matplotlib.pyplot as plt
from scipy.misc import imread
from wordcloud import WordCloud,STOPWORDS
import xlrd

2. 设置生成词云图的背景图片,最好是分辨率高且色彩边界分明的图片

def set_background(picpath):
  back_coloring = imread(picpath)# 设置背景图片,png等图片格式
  return back_coloring

3. 创建词云图:WordCloud

def create_word_cloud(txt_str, back_coloring): #txt_str表示导入的是字符串格式数据,#back_color表示的是背景图片位置
  print('---- 根据词频,开始生成词云! ----')
  font = r'C:\Windows\Fonts\simsun.ttc' #加载显示字体
  wc = WordCloud(
    font_path=font,
    collocations=False, # 去重,如果不加,词云图会显示相同的词
    stopwords=STOPWORDS, #加载停用词,如果不自己指定,则会加载默认的停用词
    max_words=100,
    width=2000,
    height=1200,
    # background_color='white',
    mask=back_coloring,
  )
  wordcloud = wc.generate(txt_str)
  # 写词云图片
  wordcloud.to_file(".\wordcloud_test.png")
  # 显示词云文件
  plt.imshow(wordcloud)
  plt.axis("off")
  plt.show()

4. 默认的停用词一般在:假如anaconda安装在D盘,则会在其目录:D:\Anaconda3\Lib\site-packages\wordcloud\stopwords,其中都是英文词,例如:

Python基于WordCloud制作词云图

Python基于WordCloud制作词云图

注意:也可以在jieba分词中,先利用自己的停用词,得到去除停用词之后的文本字符串来绘制词云图:

5. 此时,词云图无法显示数字,这是因为 wc.generate 操作中,有去除数字的语句:在wordcloud.py中,第560行左右,所以想要显示数字,需要先注释这一行

Python基于WordCloud制作词云图

6. 假设想要显示的词,已经经过jieba分词,保存在txt文档中,则绘制词云图的方法是:

例如:txt中是每行是一个词:

Python基于WordCloud制作词云图

则,先读取txt文件,形成字符串格式文本,再绘制

if __name__ == '__main__': 
  picpath = r".\xxx.png" #背景图片路径
  back_coloring = set_background(picpath)
  
  with open(r".\jieba_分词数据.txt", "r",encoding='utf-8') as f:
    remove_stop_str = f.read()
  
  create_word_cloud(remove_stop_str, back_coloring)

7. 如果通过jieba分词的数据已经处理成了(词, 词频)并保存在excel中,例如这种两列格式的excel表,第一行是标签如(词, 词频):

Python基于WordCloud制作词云图

则可以先读取词频再显示,python读取excel数据可以通过 xlrd.open_workbook 方法:

def read_from_xls(filepath,index_sheet):
  #读取文件名,filepath是excel文件的路径,index_sheet是第几个sheet
  #读取表格#
  # 设置GBK编码
  xlrd.Book.encoding = "gbk"
  rb = xlrd.open_workbook(filepath)
  print(rb)

  sheet = rb.sheet_by_index(index_sheet)
  nrows = sheet.nrows
  data_tmp = []

  for i in range(nrows - 1):
    tt=i+1 #excel的第一行是标签
    tmp_char = [str(sheet.cell_value(tt,0))] #第一列是词
    tmp_num = int(sheet.cell_value(tt,1))  #第二列是词频
    data_tmp.extend(tmp_char*tmp_num)
  return data_tmp

然后,读数据和生成词云图:

if __name__ == '__main__': 
  picpath = r".\xxx.png"
  back_coloring = set_background(picpath)
  
  data_dic = read_from_xls(r'D:\Python_workspace\spyder_space\jieba分词表.xlsx',0)
  data_dic_str = '\n'.join(data_dic) #转成字符串格式
  
  create_word_cloud(data_dic_str, back_coloring)

8. 总结代码

# -*- coding: utf-8 -*-
"""
Created on Mon Aug 19 10:47:17 2019

@author: Administrator
"""
import matplotlib.pyplot as plt
from scipy.misc import imread
from wordcloud import WordCloud,STOPWORDS
import xlrd

def set_background(picpath):
  back_coloring = imread(picpath)# 设置背景图片
  return back_coloring

def create_word_cloud(txt_str, back_coloring):
  print('---- 根据词频,开始生成词云! ----')
  font = r'C:\Windows\Fonts\simsun.ttc'
  wc = WordCloud(
    font_path=font,
    collocations=False, # 去重
    stopwords=STOPWORDS,
    max_words=100,
    width=2000,
    height=1200,
    # background_color='white',
    mask=back_coloring,
  )
  wordcloud = wc.generate(txt_str)
  # 写词云图片
  wordcloud.to_file(".\wordcloud_test.png")
  # 显示词云文件
  plt.imshow(wordcloud)
  plt.axis("off")
  plt.show()

def read_from_xls(filepath,index_sheet):
  #读取文件名
  #读取表格#
  # 设置GBK编码
  xlrd.Book.encoding = "gbk"
  rb = xlrd.open_workbook(filepath)
  print(rb)

  sheet = rb.sheet_by_index(index_sheet)
  nrows = sheet.nrows
  data_tmp = []

  for i in range(nrows - 1):
    tt=i+1
    tmp_char = [str(sheet.cell_value(tt,0))]
    tmp_num = int(sheet.cell_value(tt,1))
    data_tmp.extend(tmp_char*tmp_num)
  return data_tmp

if __name__ == '__main__': 
  picpath = r".\xxx.png"
  back_coloring = set_background(picpath)
  data_dic = read_from_xls(r'D:\Python_workspace\spyder_space\jieba分词表.xlsx',0)
  data_dic_str = '\n'.join(data_dic)
  
#  with open(r".\jieba_分词数据.txt", "r",encoding='utf-8') as f: 
#  remove_stop_str = f.read() 


create_word_cloud(data_dic_str, back_coloring)

当然绘制词云图的方法有很多,这只是其中的一种

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python实现类似ftp传输文件的网络程序示例
Apr 08 Python
python使用datetime模块计算各种时间间隔的方法
Mar 24 Python
Python的Django框架使用入门指引
Apr 15 Python
Python读写文件方法总结
Jun 09 Python
Python编程中字符串和列表的基本知识讲解
Oct 14 Python
Python+Selenium自动化实现分页(pagination)处理
Mar 31 Python
python中文分词,使用结巴分词对python进行分词(实例讲解)
Nov 14 Python
如何利用Python分析出微信朋友男女统计图
Jan 25 Python
Python Collatz序列实现过程解析
Oct 12 Python
Python爬虫使用浏览器cookies:browsercookie过程解析
Oct 22 Python
关于Django Models CharField 参数说明
Mar 31 Python
python中get和post有什么区别
Jun 19 Python
Python实现栈和队列的简单操作方法示例
Nov 29 #Python
python调用函数、类和文件操作简单实例总结
Nov 29 #Python
Python3实现将一维数组按标准长度分隔为二维数组
Nov 29 #Python
python实现把两个二维array叠加成三维array示例
Nov 29 #Python
python的time模块和datetime模块实例解析
Nov 29 #Python
python实现将一维列表转换为多维列表(numpy+reshape)
Nov 29 #Python
Python 基于wxpy库实现微信添加好友功能(简洁)
Nov 29 #Python
You might like
Admin generator, filters and I18n
2011/10/06 PHP
PHP连接SQLServer2005方法及代码
2013/12/26 PHP
php中用memcached实现页面防刷新功能
2014/08/19 PHP
php中FTP函数ftp_connect、ftp_login与ftp_chmod用法
2014/11/18 PHP
CI分页类首页、尾页不显示的解决方法
2016/03/28 PHP
PHP中new static()与new self()的比较
2016/08/19 PHP
PDO的安全处理与事物处理方法
2016/10/31 PHP
php记录搜索引擎爬行记录的实现代码
2018/03/02 PHP
JavaScript入门教程 Cookies
2009/01/31 Javascript
js判断输入是否为正整数、浮点数等数字的函数代码
2010/11/17 Javascript
jquery自动将form表单封装成json的具体实现
2014/03/17 Javascript
让table变成exls的示例代码
2014/03/24 Javascript
JavaScript立即执行函数的三种不同写法
2014/09/05 Javascript
JS实现的最简Table选项卡效果
2015/10/14 Javascript
全面介绍vue 全家桶和项目实例
2017/12/27 Javascript
vue二级菜单导航点击选中事件的方法
2018/09/12 Javascript
vue使用Google地图的实现示例代码
2018/12/19 Javascript
[13:56]DAC2018 4.5SOLO赛决赛 MidOne vs Paparazi第一场
2018/04/06 DOTA
[01:11]steam端dota2实名认证操作流程视频
2021/03/11 DOTA
基于Python实现文件大小输出
2016/01/11 Python
浅谈插入排序算法在Python程序中的实现及简单改进
2016/05/04 Python
解读! Python在人工智能中的作用
2017/11/14 Python
用tensorflow实现弹性网络回归算法
2018/01/09 Python
Pycharm保存不能自动同步到远程服务器的解决方法
2019/06/27 Python
Python 异步协程函数原理及实例详解
2019/11/13 Python
pytorch:model.train和model.eval用法及区别详解
2020/02/20 Python
Python ArgumentParse的subparser用法说明
2020/04/20 Python
英国领先的维生素和营养补充剂直接供应商:Healthspan
2019/04/22 全球购物
Groupon比利时官方网站:特卖和网上购物高达-70%
2019/08/09 全球购物
加拿大品牌鞋包连锁店:Little Burgundy
2021/02/28 全球购物
用C或者C++语言实现SOCKET通信
2015/02/24 面试题
Exception类的常用方法
2012/06/16 面试题
电气工程师岗位职责
2014/01/01 职场文书
计算机专业职业生涯规划范文
2014/01/19 职场文书
​(迎国庆)作文之我爱我的祖国
2019/09/19 职场文书
简单介绍Python的第三方库yaml
2021/06/18 Python