Python yield 使用浅析


Posted in Python onMay 28, 2015

初学 Python 的开发者经常会发现很多 Python 函数中用到了 yield 关键字,然而,带有 yield 的函数执行流程却和普通函数不一样,yield 到底用来做什么,为什么要设计 yield ?本文将由浅入深地讲解 yield 的概念和用法,帮助读者体会 Python 里 yield 简单而强大的功能。

您可能听说过,带有 yield 的函数在 Python 中被称之为 generator(生成器),何谓 generator ?
我们先抛开 generator,以一个常见的编程题目来展示 yield 的概念。
如何生成斐波那契?盗?/strong>
斐波那契(Fibonacci)?盗惺且桓龇浅<虻サ牡莨槭?校??谝桓龊偷诙?鍪?猓?我庖桓鍪?伎捎汕傲礁鍪?嗉拥玫健S眉扑慊?绦蚴涑鲮巢?瞧?盗械那 N 个数是一个非常简单的问题,许多初学者都可以轻易写出如下函数:
清单 1. 简单输出斐波那契?盗星 N 个数

 def fab(max): 

    n, a, b = 0, 0, 1 

    while n < max: 

        print b 

        a, b = b, a + b 

        n = n + 1

执行 fab(5),我们可以得到如下输出:
 >>> fab(5) 

 1 

 1 

 2 

 3 

 5

结果没有问题,但有经验的开发者会指出,直接在 fab 函数中用 print 打印数字会导致该函数可复用性较差,因为 fab 函数返回 None,其他函数无法获得该函数生成的数列。
要提高 fab 函数的可复用性,最好不要直接打印出数列,而是返回一个 List。以下是 fab 函数改写后的第二个版本:
清单 2. 输出斐波那契?盗星 N 个数第二版
 def fab(max): 

    n, a, b = 0, 0, 1 

    L = [] 

    while n < max: 

        L.append(b) 

        a, b = b, a + b 

        n = n + 1 

    return L

可以使用如下方式打印出 fab 函数返回的 List:
 >>> for n in fab(5): 

 ...     print n 

 ... 

 1 

 1 

 2 

 3 

 5

改写后的 fab 函数通过返回 List 能满足复用性的要求,但是更有经验的开发者会指出,该函数在运行中占用的内存会随着参数 max 的增大而增大,如果要控制内存占用,最好不要用 List
来保存中间结果,而是通过 iterable 对象来迭代。例如,在 Python2.x 中,代码:

清单 3. 通过 iterable 对象来迭代

 for i in range(1000): pass

会导致生成一个 1000 个元素的 List,而代码:
 for i in xrange(1000): pass

则不会生成一个 1000 个元素的 List,而是在每次迭代中返回下一个数值,内存空间占用很小。因为 xrange 不返回 List,而是返回一个 iterable 对象。
利用 iterable 我们可以把 fab 函数改写为一个支持 iterable 的 class,以下是第三个版本的 Fab:
清单 4. 第三个版本
 class Fab(object):
    def __init__(self, max): 

        self.max = max 

        self.n, self.a, self.b = 0, 0, 1
    def __iter__(self): 

        return self
    def next(self): 

        if self.n < self.max: 

            r = self.b 

            self.a, self.b = self.b, self.a + self.b 

            self.n = self.n + 1 

            return r 

        raise StopIteration()

Fab 类通过 next() 不断返回数列的下一个数,内存占用始终为常数:
 >>> for n in Fab(5): 

 ...     print n 

 ... 

 1 

 1 

 2 

 3 

 5

然而,使用 class 改写的这个版本,代码远远没有第一版的 fab 函数来得简洁。如果我们想要保持第一版 fab 函数的简洁性,同时又要获得 iterable 的效果,yield 就派上用场了:

清单 5. 使用 yield 的第四版

 def fab(max): 

    n, a, b = 0, 0, 1 

    while n < max: 

        yield b 

        # print b 

        a, b = b, a + b 

        n = n + 1
'''

第四个版本的 fab 和第一版相比,仅仅把 print b 改为了 yield b,就在保持简洁性的同时获得了 iterable 的效果。
调用第四版的 fab 和第二版的 fab 完全一致:
 >>> for n in fab(5): 

 ...     print n 

 ... 

 1 

 1 

 2 

 3 

 5

简单地讲,yield 的作用就是把一个函数变成一个 generator,带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator,调用 fab(5) 不会执行 fab 函数,而是返回一个 iterable 对象!在 for 循环执行时,每次循环都会执行 fab 函数内部的代码,执行到 yield b 时,fab 函数就返回一个迭代值,下次迭代时,代码从 yield b 的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到 yield。
也可以手动调用 fab(5) 的 next() 方法(因为 fab(5) 是一个 generator 对象,该对象具有 next() 方法),这样我们就可以更清楚地看到 fab 的执行流程:

清单 6. 执行流程

 >>> f = fab(5) 

 >>> f.next() 

 1 

 >>> f.next() 

 1 

 >>> f.next() 

 2 

 >>> f.next() 

 3 

 >>> f.next() 

 5 

 >>> f.next() 

 Traceback (most recent call last): 

  File "<stdin>", line 1, in <module> 

 StopIteration

 

当函数执行结束时,generator 自动抛出 StopIteration 异常,表示迭代完成。在 for 循环里,无需处理 StopIteration 异常,循环会正常结束。

我们可以得出以下结论:

一个带有 yield 的函数就是一个 generator,它和普通函数不同,生成一个 generator 看起来像函数调用,但不会执行任何函数代码,直到对其调用 next()(在 for 循环中会自动调用 next())才开始执行。虽然执行流程仍按函数的流程执行,但每执行到一个 yield 语句就会中断,并返回一个迭代值,下次执行时从 yield 的下一个语句继续执行。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。

yield 的好处是显而易见的,把一个函数改写为一个 generator 就获得了迭代能力,比起用类的实例保存状态来计算下一个 next() 的值,不仅代码简洁,而且执行流程异常清晰。

如何判断一个函数是否是一个特殊的 generator 函数?可以利用 isgeneratorfunction 判断:

清单 7. 使用 isgeneratorfunction 判断

 >>> from inspect import isgeneratorfunction 

 >>> isgeneratorfunction(fab) 

 True

要注意区分 fab 和 fab(5),fab 是一个 generator function,而 fab(5) 是调用 fab 返回的一个 generator,好比类的定义和类的实例的区别:

清单 8. 类的定义和类的实例

 >>> import types 

 >>> isinstance(fab, types.GeneratorType) 

 False 

 >>> isinstance(fab(5), types.GeneratorType) 

 True

 

fab 是无法迭代的,而 fab(5) 是可迭代的:
 >>> from collections import Iterable 

 >>> isinstance(fab, Iterable) 

 False 

 >>> isinstance(fab(5), Iterable) 

 True

每次调用 fab 函数都会生成一个新的 generator 实例,各实例互不影响:

 >>> f1 = fab(3) 

 >>> f2 = fab(5) 

 >>> print 'f1:', f1.next() 

 f1: 1 

 >>> print 'f2:', f2.next() 

 f2: 1 

 >>> print 'f1:', f1.next() 

 f1: 1 

 >>> print 'f2:', f2.next() 

 f2: 1 

 >>> print 'f1:', f1.next() 

 f1: 2 

 >>> print 'f2:', f2.next() 

 f2: 2 

 >>> print 'f2:', f2.next() 

 f2: 3 

 >>> print 'f2:', f2.next() 

 f2: 5

 

return 的作用

在一个 generator function 中,如果没有 return,则默认执行至函数完毕,如果在执行过程中 return,则直接抛出 StopIteration 终止迭代。

另一个例子

另一个 yield 的例子来源于文件读取。如果直接对文件对象调用 read() 方法,会导致不可预测的内存占用。好的方法是利用固定长度的缓冲区来不断读取文件内容。通过 yield,我们不再需要编写读文件的迭代类,就可以轻松实现文件读取:
清单 9. 另一个 yield 的例子

 def read_file(fpath): 

    BLOCK_SIZE = 1024 

    with open(fpath, 'rb') as f: 

        while True: 

            block = f.read(BLOCK_SIZE) 

            if block: 

                yield block 

            else: 

                return

以上仅仅简单介绍了 yield 的基本概念和用法,yield 在 Python 3 中还有更强大的用法,我们会在后续文章中讨论。
注:本文的代码均在 Python 2.7 中调试通过
Python 相关文章推荐
用python分割TXT文件成4K的TXT文件
May 23 Python
python插入排序算法的实现代码
Nov 21 Python
Python中的浮点数原理与运算分析
Oct 12 Python
Python实现的计算器功能示例
Apr 26 Python
总结python中pass的作用
Feb 27 Python
python抓取搜狗微信公众号文章
Apr 01 Python
解决Python内层for循环如何break出外层的循环的问题
Jun 24 Python
Python实现简单的列表冒泡排序和反转列表操作示例
Jul 10 Python
matplotlib 生成的图像中无法显示中文字符的解决方法
Jun 10 Python
详解Python IO编程
Jul 24 Python
Django返回HTML文件的实现方法
Sep 17 Python
python中实现词云图的示例
Dec 19 Python
Python中super的用法实例
May 28 #Python
Python中的super用法详解
May 28 #Python
Python读写ini文件的方法
May 28 #Python
Python实现给文件添加内容及得到文件信息的方法
May 28 #Python
Python功能键的读取方法
May 28 #Python
python实现将文本转换成语音的方法
May 28 #Python
Python 26进制计算实现方法
May 28 #Python
You might like
PHP 和 XML: 使用expat函数(二)
2006/10/09 PHP
php表单转换textarea换行符的方法
2010/09/10 PHP
PHPExcel笔记, mpdf导出
2016/05/03 PHP
php 微信公众平台开发模式实现多客服的实例代码
2016/11/07 PHP
搭建自己的PHP MVC框架详解
2017/08/16 PHP
PHP实现与java 通信的插件使用教程
2019/08/11 PHP
offsetParent 算法分析
2010/04/05 Javascript
Js-$.extend扩展方法使方法参数更灵活
2013/01/15 Javascript
Javascript MVC框架Backbone.js详解
2014/09/18 Javascript
jQuery+CSS3折叠卡片式下拉列表框实现效果
2015/11/02 Javascript
JS中setTimeout和setInterval的最大延时值详解
2017/02/13 Javascript
浅析JS中的 map, filter, some, every, forEach, for in, for of 用法总结
2017/03/29 Javascript
详解Vue 事件驱动和依赖追踪
2017/04/22 Javascript
js绑定事件和解绑事件
2017/04/27 Javascript
Vue实现动态显示textarea剩余字数
2017/05/22 Javascript
Linux Centos7.2下安装nodejs&amp;npm配置全局路径的教程
2018/05/15 NodeJs
vue解决一个方法同时发送多个请求的问题
2018/09/25 Javascript
Vue编程式跳转的实例代码详解
2019/07/10 Javascript
django js 实现表格动态标序号的实例代码
2019/07/12 Javascript
详细介绍解决vue和jsp结合的方法
2020/02/06 Javascript
基于vue中的scoped坑点解说
2020/09/04 Javascript
vue编写简单的购物车功能
2021/01/08 Vue.js
js基于canvas实现时钟组件
2021/02/07 Javascript
python2与python3的print及字符串格式化小结
2018/11/30 Python
200行python代码实现2048游戏
2019/07/17 Python
使用SimpleITK读取和保存NIfTI/DICOM文件实例
2020/07/01 Python
浅谈Python描述数据结构之KMP篇
2020/09/06 Python
CSS3模块的目前的状况分析
2010/02/24 HTML / CSS
HTML5制作3D爱心动画教程 献给女友浪漫的礼物
2014/11/05 HTML / CSS
HTML5头部标签的一些常用信息小结
2016/10/23 HTML / CSS
公司年会晚宴演讲稿
2014/01/06 职场文书
医药销售自荐书
2014/05/29 职场文书
2014高中生入党思想汇报范文
2014/09/13 职场文书
员工辞职信范文大全
2015/05/12 职场文书
企业培训简报范文
2015/07/20 职场文书
2016年教师节感言
2015/12/09 职场文书