Python中Schedule模块使用详解 周期任务神器


Posted in Python onApril 19, 2022

如果你想在Linux服务器上周期性地执行某个 Python 脚本,最出名的选择应该是 Crontab 脚本,但是 Crontab 具有以下缺点:

1.不方便执行秒级的任务。

2.当需要执行的定时任务有上百个的时候,Crontab的管理就会特别不方便

另外一个选择是 Celery,但是 Celery 的配置比较麻烦,如果你只是需要一个轻量级的调度工具,Celery 不会是一个好选择。

在你想要使用一个轻量级的任务调度工具,而且希望它尽量简单、容易使用、不需要外部依赖,最好能够容纳 Crontab 的所有基本功能,那么 Schedule 模块是你的不二之选。

使用它来调度任务可能只需要几行代码,感受一下:

import schedule
import time

def job():
    print("I'm working...")

schedule.every(10).minutes.do(job)

while True:
    schedule.run_pending()
    time.sleep(1)

上面的代码表示每10分钟执行一次 job 函数,非常简单方便。你只需要引入 schedule 模块,通过调用 scedule.every(时间数).时间类型.do(job) 发布周期任务。

发布后的周期任务需要用 run_pending 函数来检测是否执行,因此需要一个 While 循环不断地轮询这个函数。

下面具体讲讲Schedule模块的安装和初级、进阶使用方法。

1.准备

请选择以下任一种方式输入命令安装依赖:

1. Windows 环境 打开 Cmd (开始-运行-CMD)。

2. MacOS 环境 打开 Terminal (command+空格输入Terminal)。

3. 如果你用的是 VSCode编辑器 或 Pycharm,可以直接使用界面下方的Terminal.

pip install schedule

2.基本使用

最基本的使用在文首已经提到过,下面给大家展示更多的调度任务例子:

import schedule
import time

def job():
    print("I'm working...")

# 每十分钟执行任务
schedule.every(10).minutes.do(job)
# 每个小时执行任务
schedule.every().hour.do(job)
# 每天的10:30执行任务
schedule.every().day.at("10:30").do(job)
# 每个月执行任务
schedule.every().monday.do(job)
# 每个星期三的13:15分执行任务
schedule.every().wednesday.at("13:15").do(job)
# 每分钟的第17秒执行任务
schedule.every().minute.at(":17").do(job)

while True:
    schedule.run_pending()
    time.sleep(1)

可以看到,从月到秒的配置,上面的例子都覆盖到了。不过如果你想只运行一次任务的话,可以这么配:

import schedule
import time

def job_that_executes_once():
    # 此处编写的任务只会执行一次...
    return schedule.CancelJob

schedule.every().day.at('22:30').do(job_that_executes_once)

while True:
    schedule.run_pending()
    time.sleep(1)

参数传递

如果你有参数需要传递给作业去执行,你只需要这么做:

import schedule

def greet(name):
    print('Hello', name)

# do() 将额外的参数传递给job函数
schedule.every(2).seconds.do(greet, name='Alice')
schedule.every(4).seconds.do(greet, name='Bob')

获取目前所有的作业

如果你想获取目前所有的作业:

import schedule

def hello():
    print('Hello world')

schedule.every().second.do(hello)

all_jobs = schedule.get_jobs()

取消所有作业

如果某些机制触发了,你需要立即清除当前程序的所有作业:

import schedule

def greet(name):
    print('Hello {}'.format(name))

schedule.every().second.do(greet)

schedule.clear()

标签功能

在设置作业的时候,为了后续方便管理作业,你可以给作业打个标签,这样你可以通过标签过滤获取作业或取消作业。

import schedule

def greet(name):
    print('Hello {}'.format(name))

# .tag 打标签
schedule.every().day.do(greet, 'Andrea').tag('daily-tasks', 'friend')
schedule.every().hour.do(greet, 'John').tag('hourly-tasks', 'friend')
schedule.every().hour.do(greet, 'Monica').tag('hourly-tasks', 'customer')
schedule.every().day.do(greet, 'Derek').tag('daily-tasks', 'guest')

# get_jobs(标签):可以获取所有该标签的任务
friends = schedule.get_jobs('friend')

# 取消所有 daily-tasks 标签的任务
schedule.clear('daily-tasks')

设定作业截止时间

如果你需要让某个作业到某个时间截止,你可以通过这个方法:

import schedule
from datetime import datetime, timedelta, time

def job():
    print('Boo')

# 每个小时运行作业,18:30后停止
schedule.every(1).hours.until("18:30").do(job)

# 每个小时运行作业,2030-01-01 18:33 today
schedule.every(1).hours.until("2030-01-01 18:33").do(job)

# 每个小时运行作业,8个小时后停止
schedule.every(1).hours.until(timedelta(hours=8)).do(job)

# 每个小时运行作业,11:32:42后停止
schedule.every(1).hours.until(time(11, 33, 42)).do(job)

# 每个小时运行作业,2020-5-17 11:36:20后停止
schedule.every(1).hours.until(datetime(2020, 5, 17, 11, 36, 20)).do(job)

截止日期之后,该作业将无法运行。

立即运行所有作业,而不管其安排如何

如果某个机制触发了,你需要立即运行所有作业,可以调用 schedule.run_all() :

import schedule

def job_1():
    print('Foo')

def job_2():
    print('Bar')

schedule.every().monday.at("12:40").do(job_1)
schedule.every().tuesday.at("16:40").do(job_2)

schedule.run_all()

# 立即运行所有作业,每次作业间隔10秒
schedule.run_all(delay_seconds=10)

3.高级使用

装饰器安排作业

如果你觉得设定作业这种形式太啰嗦了,也可以使用装饰器模式:

from schedule import every, repeat, run_pending
import time

# 此装饰器效果等同于 schedule.every(10).minutes.do(job)
@repeat(every(10).minutes)
def job():
    print("I am a scheduled job")

while True:
    run_pending()
    time.sleep(1)

并行执行

默认情况下,Schedule 按顺序执行所有作业。其背后的原因是,很难找到让每个人都高兴的并行执行模型。

不过你可以通过多线程的形式来运行每个作业以解决此限制:

import threading
import time
import schedule

def job1():
    print("I'm running on thread %s" % threading.current_thread())
def job2():
    print("I'm running on thread %s" % threading.current_thread())
def job3():
    print("I'm running on thread %s" % threading.current_thread())

def run_threaded(job_func):
    job_thread = threading.Thread(target=job_func)
    job_thread.start()

schedule.every(10).seconds.do(run_threaded, job1)
schedule.every(10).seconds.do(run_threaded, job2)
schedule.every(10).seconds.do(run_threaded, job3)

while True:
    schedule.run_pending()
    time.sleep(1)

日志记录

Schedule 模块同时也支持 logging 日志记录,这么使用:

import schedule
import logging

logging.basicConfig()
schedule_logger = logging.getLogger('schedule')
# 日志级别为DEBUG
schedule_logger.setLevel(level=logging.DEBUG)

def job():
    print("Hello, Logs")

schedule.every().second.do(job)

schedule.run_all()

schedule.clear()

效果如下:

DEBUG:schedule:Running *all* 1 jobs with 0s delay in between
DEBUG:schedule:Running job Job(interval=1, unit=seconds, do=job, args=(), kwargs={})
Hello, Logs
DEBUG:schedule:Deleting *all* jobs

异常处理

Schedule 不会自动捕捉异常,它遇到异常会直接抛出,这会导致一个严重的问题:后续所有的作业都会被中断执行,因此我们需要捕捉到这些异常。

你可以手动捕捉,但是某些你预料不到的情况需要程序进行自动捕获,加一个装饰器就能做到了:

import functools

def catch_exceptions(cancel_on_failure=False):
    def catch_exceptions_decorator(job_func):
        @functools.wraps(job_func)
        def wrapper(*args, **kwargs):
            try:
                return job_func(*args, **kwargs)
            except:
                import traceback
                print(traceback.format_exc())
                if cancel_on_failure:
                    return schedule.CancelJob
        return wrapper
    return catch_exceptions_decorator

@catch_exceptions(cancel_on_failure=True)
def bad_task():
    return 1 / 0

schedule.every(5).minutes.do(bad_task)

这样,bad_task 在执行时遇到的任何错误,都会被 catch_exceptions 捕获,这点在保证调度任务正常运转的时候非常关键。

到此这篇关于Python周期任务神器之Schedule模块使用详解的文章就介绍到这了!

Python 相关文章推荐
Mac 上切换Python多版本
Jun 17 Python
Python 实现购物商城,含有用户入口和商家入口的示例
Sep 15 Python
Python下载网络文本数据到本地内存的四种实现方法示例
Feb 05 Python
浅谈配置OpenCV3 + Python3的简易方法(macOS)
Apr 02 Python
Pandas标记删除重复记录的方法
Apr 08 Python
python实现AES加密解密
Mar 28 Python
Python3操作Excel文件(读写)的简单实例
Sep 02 Python
python NumPy ndarray二维数组 按照行列求平均实例
Nov 26 Python
pytorch实现mnist分类的示例讲解
Jan 10 Python
python反爬虫方法的优缺点分析
Nov 25 Python
python飞机大战游戏实例讲解
Dec 04 Python
解决jupyter notebook启动后没有token的坑
Apr 24 Python
python中urllib包的网络请求教程
Apr 19 #Python
python APScheduler执行定时任务介绍
Apr 19 #Python
Python数据可视化之Seaborn的安装及使用
python 闭包函数详细介绍
Apr 19 #Python
Python  lambda匿名函数和三元运算符
Apr 19 #Python
Python使用mitmproxy工具监控手机 下载手机小视频
使用Python通过企业微信应用给企业成员发消息
You might like
php根据指定位置和长度获得子字符串的方法
2015/03/17 PHP
thinkphp多层MVC用法分析
2015/12/30 PHP
PHP实现基于图的深度优先遍历输出1,2,3...n的全排列功能
2017/11/10 PHP
使用composer命令加载vendor中的第三方类库 的方法
2019/07/09 PHP
漂亮的提示信息(带箭头)
2007/03/21 Javascript
MyEclipse取消验证Js的两种方法
2013/11/14 Javascript
jquery ajax中使用jsonp的限制解决方法
2013/11/22 Javascript
js获取UserControl内容为拼html时提供方便
2014/11/02 Javascript
javascript继承机制实例详解
2014/11/20 Javascript
解决ueditor jquery javascript 取值问题
2014/12/30 Javascript
在Node.js中使用HTTP上传文件的方法
2015/06/23 Javascript
JavaScript原生xmlHttp与jquery的ajax方法json数据格式实例
2015/12/04 Javascript
JS获取文件大小方法小结
2015/12/08 Javascript
解析javascript瀑布流原理实现图片滚动加载
2016/03/10 Javascript
JS 根据子网掩码,网关计算出所有IP地址范围示例
2020/04/23 Javascript
bootstrap——bootstrapTable实现隐藏列的示例
2017/01/14 Javascript
用React实现一个完整的TodoList的示例代码
2017/10/30 Javascript
详解一次Vue低版本安卓白屏问题的解决过程
2019/05/30 Javascript
基于vue实现圆形菜单栏组件
2019/07/05 Javascript
解决layer弹出层中表单不起作用的问题
2019/09/09 Javascript
Vue中axios拦截器如何单独配置token
2019/12/27 Javascript
JS实现吸顶特效
2020/01/08 Javascript
vue mvvm数据响应实现
2020/11/11 Javascript
python消费kafka数据批量插入到es的方法
2018/12/27 Python
Python不同目录间进行模块调用的实现方法
2019/01/29 Python
Keras loss函数剖析
2020/07/06 Python
Java面试题:为什么要用Java
2012/05/11 面试题
电子商务专员岗位职责
2013/12/11 职场文书
高中毕业自我鉴定
2013/12/19 职场文书
食品安全标语
2014/06/07 职场文书
环保志愿者活动总结
2014/06/27 职场文书
孩子教育的心得体会
2014/09/01 职场文书
计算机科学与技术专业求职信
2014/09/03 职场文书
党纪处分决定书
2015/06/24 职场文书
一劳永逸彻底解决pip install慢的办法
2021/05/24 Python
java多态注意项小结
2021/10/16 Java/Android