Python中Schedule模块使用详解 周期任务神器


Posted in Python onApril 19, 2022

如果你想在Linux服务器上周期性地执行某个 Python 脚本,最出名的选择应该是 Crontab 脚本,但是 Crontab 具有以下缺点:

1.不方便执行秒级的任务。

2.当需要执行的定时任务有上百个的时候,Crontab的管理就会特别不方便

另外一个选择是 Celery,但是 Celery 的配置比较麻烦,如果你只是需要一个轻量级的调度工具,Celery 不会是一个好选择。

在你想要使用一个轻量级的任务调度工具,而且希望它尽量简单、容易使用、不需要外部依赖,最好能够容纳 Crontab 的所有基本功能,那么 Schedule 模块是你的不二之选。

使用它来调度任务可能只需要几行代码,感受一下:

import schedule
import time

def job():
    print("I'm working...")

schedule.every(10).minutes.do(job)

while True:
    schedule.run_pending()
    time.sleep(1)

上面的代码表示每10分钟执行一次 job 函数,非常简单方便。你只需要引入 schedule 模块,通过调用 scedule.every(时间数).时间类型.do(job) 发布周期任务。

发布后的周期任务需要用 run_pending 函数来检测是否执行,因此需要一个 While 循环不断地轮询这个函数。

下面具体讲讲Schedule模块的安装和初级、进阶使用方法。

1.准备

请选择以下任一种方式输入命令安装依赖:

1. Windows 环境 打开 Cmd (开始-运行-CMD)。

2. MacOS 环境 打开 Terminal (command+空格输入Terminal)。

3. 如果你用的是 VSCode编辑器 或 Pycharm,可以直接使用界面下方的Terminal.

pip install schedule

2.基本使用

最基本的使用在文首已经提到过,下面给大家展示更多的调度任务例子:

import schedule
import time

def job():
    print("I'm working...")

# 每十分钟执行任务
schedule.every(10).minutes.do(job)
# 每个小时执行任务
schedule.every().hour.do(job)
# 每天的10:30执行任务
schedule.every().day.at("10:30").do(job)
# 每个月执行任务
schedule.every().monday.do(job)
# 每个星期三的13:15分执行任务
schedule.every().wednesday.at("13:15").do(job)
# 每分钟的第17秒执行任务
schedule.every().minute.at(":17").do(job)

while True:
    schedule.run_pending()
    time.sleep(1)

可以看到,从月到秒的配置,上面的例子都覆盖到了。不过如果你想只运行一次任务的话,可以这么配:

import schedule
import time

def job_that_executes_once():
    # 此处编写的任务只会执行一次...
    return schedule.CancelJob

schedule.every().day.at('22:30').do(job_that_executes_once)

while True:
    schedule.run_pending()
    time.sleep(1)

参数传递

如果你有参数需要传递给作业去执行,你只需要这么做:

import schedule

def greet(name):
    print('Hello', name)

# do() 将额外的参数传递给job函数
schedule.every(2).seconds.do(greet, name='Alice')
schedule.every(4).seconds.do(greet, name='Bob')

获取目前所有的作业

如果你想获取目前所有的作业:

import schedule

def hello():
    print('Hello world')

schedule.every().second.do(hello)

all_jobs = schedule.get_jobs()

取消所有作业

如果某些机制触发了,你需要立即清除当前程序的所有作业:

import schedule

def greet(name):
    print('Hello {}'.format(name))

schedule.every().second.do(greet)

schedule.clear()

标签功能

在设置作业的时候,为了后续方便管理作业,你可以给作业打个标签,这样你可以通过标签过滤获取作业或取消作业。

import schedule

def greet(name):
    print('Hello {}'.format(name))

# .tag 打标签
schedule.every().day.do(greet, 'Andrea').tag('daily-tasks', 'friend')
schedule.every().hour.do(greet, 'John').tag('hourly-tasks', 'friend')
schedule.every().hour.do(greet, 'Monica').tag('hourly-tasks', 'customer')
schedule.every().day.do(greet, 'Derek').tag('daily-tasks', 'guest')

# get_jobs(标签):可以获取所有该标签的任务
friends = schedule.get_jobs('friend')

# 取消所有 daily-tasks 标签的任务
schedule.clear('daily-tasks')

设定作业截止时间

如果你需要让某个作业到某个时间截止,你可以通过这个方法:

import schedule
from datetime import datetime, timedelta, time

def job():
    print('Boo')

# 每个小时运行作业,18:30后停止
schedule.every(1).hours.until("18:30").do(job)

# 每个小时运行作业,2030-01-01 18:33 today
schedule.every(1).hours.until("2030-01-01 18:33").do(job)

# 每个小时运行作业,8个小时后停止
schedule.every(1).hours.until(timedelta(hours=8)).do(job)

# 每个小时运行作业,11:32:42后停止
schedule.every(1).hours.until(time(11, 33, 42)).do(job)

# 每个小时运行作业,2020-5-17 11:36:20后停止
schedule.every(1).hours.until(datetime(2020, 5, 17, 11, 36, 20)).do(job)

截止日期之后,该作业将无法运行。

立即运行所有作业,而不管其安排如何

如果某个机制触发了,你需要立即运行所有作业,可以调用 schedule.run_all() :

import schedule

def job_1():
    print('Foo')

def job_2():
    print('Bar')

schedule.every().monday.at("12:40").do(job_1)
schedule.every().tuesday.at("16:40").do(job_2)

schedule.run_all()

# 立即运行所有作业,每次作业间隔10秒
schedule.run_all(delay_seconds=10)

3.高级使用

装饰器安排作业

如果你觉得设定作业这种形式太啰嗦了,也可以使用装饰器模式:

from schedule import every, repeat, run_pending
import time

# 此装饰器效果等同于 schedule.every(10).minutes.do(job)
@repeat(every(10).minutes)
def job():
    print("I am a scheduled job")

while True:
    run_pending()
    time.sleep(1)

并行执行

默认情况下,Schedule 按顺序执行所有作业。其背后的原因是,很难找到让每个人都高兴的并行执行模型。

不过你可以通过多线程的形式来运行每个作业以解决此限制:

import threading
import time
import schedule

def job1():
    print("I'm running on thread %s" % threading.current_thread())
def job2():
    print("I'm running on thread %s" % threading.current_thread())
def job3():
    print("I'm running on thread %s" % threading.current_thread())

def run_threaded(job_func):
    job_thread = threading.Thread(target=job_func)
    job_thread.start()

schedule.every(10).seconds.do(run_threaded, job1)
schedule.every(10).seconds.do(run_threaded, job2)
schedule.every(10).seconds.do(run_threaded, job3)

while True:
    schedule.run_pending()
    time.sleep(1)

日志记录

Schedule 模块同时也支持 logging 日志记录,这么使用:

import schedule
import logging

logging.basicConfig()
schedule_logger = logging.getLogger('schedule')
# 日志级别为DEBUG
schedule_logger.setLevel(level=logging.DEBUG)

def job():
    print("Hello, Logs")

schedule.every().second.do(job)

schedule.run_all()

schedule.clear()

效果如下:

DEBUG:schedule:Running *all* 1 jobs with 0s delay in between
DEBUG:schedule:Running job Job(interval=1, unit=seconds, do=job, args=(), kwargs={})
Hello, Logs
DEBUG:schedule:Deleting *all* jobs

异常处理

Schedule 不会自动捕捉异常,它遇到异常会直接抛出,这会导致一个严重的问题:后续所有的作业都会被中断执行,因此我们需要捕捉到这些异常。

你可以手动捕捉,但是某些你预料不到的情况需要程序进行自动捕获,加一个装饰器就能做到了:

import functools

def catch_exceptions(cancel_on_failure=False):
    def catch_exceptions_decorator(job_func):
        @functools.wraps(job_func)
        def wrapper(*args, **kwargs):
            try:
                return job_func(*args, **kwargs)
            except:
                import traceback
                print(traceback.format_exc())
                if cancel_on_failure:
                    return schedule.CancelJob
        return wrapper
    return catch_exceptions_decorator

@catch_exceptions(cancel_on_failure=True)
def bad_task():
    return 1 / 0

schedule.every(5).minutes.do(bad_task)

这样,bad_task 在执行时遇到的任何错误,都会被 catch_exceptions 捕获,这点在保证调度任务正常运转的时候非常关键。

到此这篇关于Python周期任务神器之Schedule模块使用详解的文章就介绍到这了!

Python 相关文章推荐
Python中的map、reduce和filter浅析
Apr 26 Python
如何在Python中编写并发程序
Feb 27 Python
Python引用传值概念与用法实例小结
Oct 07 Python
matplotlib设置legend图例代码示例
Dec 19 Python
使用pandas read_table读取csv文件的方法
Jul 04 Python
tensorflow学习教程之文本分类详析
Aug 07 Python
Python中format()格式输出全解
Apr 12 Python
Django ORM 查询管理器源码解析
Aug 05 Python
详解如何用TensorFlow训练和识别/分类自定义图片
Aug 05 Python
Python使用type动态创建类操作示例
Feb 29 Python
python实战之用emoji表情生成文字
May 08 Python
python中的sys模块和os模块
Mar 20 Python
python中urllib包的网络请求教程
Apr 19 #Python
python APScheduler执行定时任务介绍
Apr 19 #Python
Python数据可视化之Seaborn的安装及使用
python 闭包函数详细介绍
Apr 19 #Python
Python  lambda匿名函数和三元运算符
Apr 19 #Python
Python使用mitmproxy工具监控手机 下载手机小视频
使用Python通过企业微信应用给企业成员发消息
You might like
URL Rewrite的设置方法
2007/01/02 PHP
ThinkPHP查询中的魔术方法简述
2014/06/25 PHP
基于PHPexecl类生成复杂的报表表头示例
2016/10/14 PHP
SCP远程VPS快速搬家和WDCP升级php5.3安装memcached和eaccelerator教程
2017/07/27 PHP
PHP7内核CGI与FastCGI详解
2019/04/14 PHP
基于jquery和svg实现超炫酷的动画特效
2014/12/09 Javascript
javascript实现无缝上下滚动特效
2015/12/16 Javascript
详解Wondows下Node.js使用MongoDB的环境配置
2016/03/01 Javascript
基于jQuery实现发送短信验证码后的倒计时功能(无视页面关闭)
2016/09/02 Javascript
JS实现简单的天数计算器完整实例
2017/04/28 Javascript
微信小程序实现点击生成随机验证码
2020/09/09 Javascript
[03:32]2014DOTA2西雅图邀请赛 CIS外卡赛赛前black专访
2014/07/09 DOTA
[03:57]《不朽》——2015DOTA2国际邀请赛—中国军团出征主题曲MV
2015/07/15 DOTA
Python中os和shutil模块实用方法集锦
2014/05/13 Python
Django中的“惰性翻译”方法的相关使用
2015/07/27 Python
Python numpy生成矩阵、串联矩阵代码分享
2017/12/04 Python
python爬虫租房信息在地图上显示的方法
2019/05/13 Python
Django 配置多站点多域名的实现步骤
2019/05/17 Python
python面试题之列表声明实例分析
2019/07/08 Python
python numpy中cumsum的用法详解
2019/10/17 Python
Python面向对象原理与基础语法详解
2020/01/02 Python
Tensorflow 多线程设置方式
2020/02/06 Python
Python3实现英文字母转换哥特式字体实例代码
2020/09/01 Python
css3媒体查询中device-width和width的区别详解
2020/03/27 HTML / CSS
化学实验员岗位职责
2013/12/28 职场文书
机关门卫岗位职责
2013/12/30 职场文书
校友会欢迎辞
2014/01/13 职场文书
禁止高声喧哗的标语
2014/06/11 职场文书
2014年幼儿园后勤工作总结
2014/11/10 职场文书
一年级数学上册复习计划
2015/01/17 职场文书
实习报告范文
2019/07/30 职场文书
简单实现一个手持弹幕功能+文字抖动特效
2021/03/31 HTML / CSS
MySQL 数据丢失排查案例
2021/05/08 MySQL
Go Plugins插件的实现方式
2021/08/07 Golang
阿里云服务器部署mongodb的详细过程
2021/09/04 MongoDB
Java版 单机五子棋
2022/05/04 Java/Android