Python3 多线程(连接池)操作MySQL插入数据


Posted in Python onJune 09, 2021

多线程(连接池)操作MySQL插入数据

针对于此篇博客的收获心得:

  • 首先是可以构建连接数据库的连接池,这样可以多开启连接,同一时间连接不同的数据表进行查询,插入,为多线程进行操作数据库打基础
  • 多线程根据多连接的方式,需求中要完成多语言的入库操作,我们可以启用多线程对不同语言数据进行并行操作
  • 在插入过程中,一条一插入,比较浪费时间,我们可以把数据进行积累,积累到一定的条数的时候,执行一条sql命令,一次性将多条数据插入到数据库中,节省时间cur.executemany

1.主要模块

DBUtils : 允许在多线程应用和数据库之间连接的模块套件
Threading : 提供多线程功能

2.创建连接池

PooledDB 基本参数:

  • mincached : 最少的空闲连接数,如果空闲连接数小于这个数,Pool自动创建新连接;
  • maxcached : 最大的空闲连接数,如果空闲连接数大于这个数,Pool则关闭空闲连接;
  • maxconnections : 最大的连接数;
  • blocking : 当连接数达到最大的连接数时,在请求连接的时候,如果这个值是True,请求连接的程序会一直等待,直到当前连接数小于最大连接数,如果这个值是False,会报错;
def mysql_connection():
    maxconnections = 15  # 最大连接数
    pool = PooledDB(
        pymysql,
        maxconnections,
        host='localhost',
        user='root',
        port=3306,
        passwd='123456',
        db='test_DB',
        use_unicode=True)
    return pool

# 使用方式
pool = mysql_connection()
con = pool.connection()

3.数据预处理

文件格式:txt

共准备了四份虚拟数据以便测试,分别有10万, 50万, 100万, 500万行数据

MySQL表结构如下图:

Python3 多线程(连接池)操作MySQL插入数据

数据处理思路 :

  • 每一行一条记录,每个字段间用制表符 “\t” 间隔开,字段带有双引号;
  • 读取出来的数据类型是 Bytes ;
  • 最终得到嵌套列表的格式,用于多线程循环每个任务每次处理10万行数据;

格式 : [ [(A,B,C,D), (A,B,C,D),(A,B,C,D),…], [(A,B,C,D), (A,B,C,D),(A,B,C,D),…], [], … ]

import re
import time

st = time.time()
with open("10w.txt", "rb") as f:
    data = []
    for line in f:
        line = re.sub("\s", "", str(line, encoding="utf-8"))
        line = tuple(line[1:-1].split("\"\""))
        data.append(line)
    n = 100000  # 按每10万行数据为最小单位拆分成嵌套列表
    result = [data[i:i + n] for i in range(0, len(data), n)]
print("10万行数据,耗时:{}".format(round(time.time() - st, 3)))

# 10万行数据,耗时:0.374
# 50万行数据,耗时:1.848
# 100万行数据,耗时:3.725
# 500万行数据,耗时:18.493

4.线程任务

每调用一次插入函数就从连接池中取出一个链接操作,完成后关闭链接;
executemany 批量操作,减少 commit 次数,提升效率;

def mysql_insert(*args):
    con = pool.connection()
    cur = con.cursor()
    sql = "INSERT INTO test(sku,fnsku,asin,shopid) VALUES(%s, %s, %s, %s)"
    try:
        cur.executemany(sql, *args)
        con.commit()
    except Exception as e:
        con.rollback()  # 事务回滚
        print('SQL执行有误,原因:', e)
    finally:
        cur.close()
        con.close()

5.启动多线程

代码思路 :

设定最大队列数,该值必须要小于连接池的最大连接数,否则创建线程任务所需要的连接无法满足,会报错 : pymysql.err.OperationalError: (1040, ‘Too many connections')循环预处理好的列表数据,添加队列任务如果达到队列最大值 或者 当前任务是最后一个,就开始多线程队执行队列里的任务,直到队列为空;

def task():
    q = Queue(maxsize=10)  # 设定最大队列数和线程数
    # data : 预处理好的数据(嵌套列表)
    while data:
        content = data.pop()
        t = threading.Thread(target=mysql_insert, args=(content,))
        q.put(t)
        if (q.full() == True) or (len(data)) == 0:
            thread_list = []
            while q.empty() == False:
                t = q.get()
                thread_list.append(t)
                t.start()
            for t in thread_list:
                t.join()

6.完整示例

import pymysql
import threading
import re
import time
from queue import Queue
from DBUtils.PooledDB import PooledDB

class ThreadInsert(object):
    "多线程并发MySQL插入数据"
    def __init__(self):
        start_time = time.time()
        self.pool = self.mysql_connection()
        self.data = self.getData()
        self.mysql_delete()
        self.task()
        print("========= 数据插入,共耗时:{}'s =========".format(round(time.time() - start_time, 3)))
        
    def mysql_connection(self):
        maxconnections = 15  # 最大连接数
        pool = PooledDB(
            pymysql,
            maxconnections,
            host='localhost',
            user='root',
            port=3306,
            passwd='123456',
            db='test_DB',
            use_unicode=True)
        return pool

    def getData(self):
        st = time.time()
        with open("10w.txt", "rb") as f:
            data = []
            for line in f:
                line = re.sub("\s", "", str(line, encoding="utf-8"))
                line = tuple(line[1:-1].split("\"\""))
                data.append(line)
        n = 100000    # 按每10万行数据为最小单位拆分成嵌套列表
        result = [data[i:i + n] for i in range(0, len(data), n)]
        print("共获取{}组数据,每组{}个元素.==>> 耗时:{}'s".format(len(result), n, round(time.time() - st, 3)))
        return result

    def mysql_delete(self):
        st = time.time()
        con = self.pool.connection()
        cur = con.cursor()
        sql = "TRUNCATE TABLE test"
        cur.execute(sql)
        con.commit()
        cur.close()
        con.close()
        print("清空原数据.==>> 耗时:{}'s".format(round(time.time() - st, 3)))

    def mysql_insert(self, *args):
        con = self.pool.connection()
        cur = con.cursor()
        sql = "INSERT INTO test(sku, fnsku, asin, shopid) VALUES(%s, %s, %s, %s)"
        try:
            cur.executemany(sql, *args)
            con.commit()
        except Exception as e:
            con.rollback()  # 事务回滚
            print('SQL执行有误,原因:', e)
        finally:
            cur.close()
            con.close()

    def task(self):
        q = Queue(maxsize=10)  # 设定最大队列数和线程数
        st = time.time()
        while self.data:
            content = self.data.pop()
            t = threading.Thread(target=self.mysql_insert, args=(content,))
            q.put(t)
            if (q.full() == True) or (len(self.data)) == 0:
                thread_list = []
                while q.empty() == False:
                    t = q.get()
                    thread_list.append(t)
                    t.start()
                for t in thread_list:
                    t.join()
        print("数据插入完成.==>> 耗时:{}'s".format(round(time.time() - st, 3)))

if __name__ == '__main__':
    ThreadInsert()

插入数据对比

共获取1组数据,每组100000个元素.== >> 耗时:0.374's
清空原数据.== >> 耗时:0.031's
数据插入完成.== >> 耗时:2.499's
=============== 10w数据插入,共耗时:3.092's ===============
共获取5组数据,每组100000个元素.== >> 耗时:1.745's
清空原数据.== >> 耗时:0.0's
数据插入完成.== >> 耗时:16.129's
=============== 50w数据插入,共耗时:17.969's ===============
共获取10组数据,每组100000个元素.== >> 耗时:3.858's
清空原数据.== >> 耗时:0.028's
数据插入完成.== >> 耗时:41.269's
=============== 100w数据插入,共耗时:45.257's ===============
共获取50组数据,每组100000个元素.== >> 耗时:19.478's
清空原数据.== >> 耗时:0.016's
数据插入完成.== >> 耗时:317.346's
=============== 500w数据插入,共耗时:337.053's ===============

7.思考/总结

思考 :多线程+队列的方式基本能满足日常的工作需要,但是细想还是有不足;
例子中每次执行10个线程任务,在这10个任务执行完后才能重新添加队列任务,这样会造成队列空闲.如剩余1个任务未完成,当中空闲数 9,当中的资源时间都浪费了;
是否能一直保持队列饱满的状态,每完成一个任务就重新填充一个.

 到此这篇关于Python3 多线程(连接池)操作MySQL插入数据的文章就介绍到这了,更多相关Python3 多线程插入MySQL数据内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python的包管理器pip更换软件源的方法详解
Jun 20 Python
Python中在脚本中引用其他文件函数的实现方法
Jun 23 Python
python使用turtle库与random库绘制雪花
Jun 22 Python
Python实现FTP文件传输的实例
Jul 07 Python
python 使用socket传输图片视频等文件的实现方式
Aug 07 Python
分享8点超级有用的Python编程建议(推荐)
Oct 13 Python
用Python画小女孩放风筝的示例
Nov 23 Python
Python Lambda函数使用总结详解
Dec 11 Python
python各层级目录下import方法代码实例
Jan 20 Python
python线程池 ThreadPoolExecutor 的用法示例
Oct 10 Python
Python在后台自动解压各种压缩文件的实现方法
Nov 10 Python
利用Python函数实现一个万历表完整示例
Jan 23 Python
jupyter notebook保存文件默认路径更改方法汇总(亲测可以)
Django rest framework如何自定义用户表
Jun 09 #Python
如何使用Python提取Chrome浏览器保存的密码
Jun 09 #Python
python缺失值的解决方法总结
Jun 09 #Python
Python提取PDF指定内容并生成新文件
Python激活Anaconda环境变量的详细步骤
Jun 08 #Python
Python序列化与反序列化相关知识总结
Jun 08 #Python
You might like
PHP中的命名空间相关概念浅析
2015/01/22 PHP
Ubuntu彻底删除PHP7.0的方法
2018/07/27 PHP
基于php解决json_encode中文UNICODE转码问题
2020/11/10 PHP
根据json字符串生成Html的一种方式
2013/01/09 Javascript
使用jQuery validate 验证注册表单实例演示
2013/03/25 Javascript
node.js中的定时器nextTick()和setImmediate()区别分析
2014/11/26 Javascript
JavaScript与HTML的结合方法详解
2015/11/23 Javascript
jQuery+JSON实现AJAX二级联动实例分析
2015/12/18 Javascript
JavaScript生成带有缩进的表格代码
2016/06/15 Javascript
JavaScript队列、优先队列与循环队列
2016/11/14 Javascript
详解Angular的内置过滤器和自定义过滤器【推荐】
2016/12/26 Javascript
Node.js创建Web、TCP服务器
2017/12/05 Javascript
基于JavaScript实现简单的音频播放功能
2018/01/07 Javascript
解决js ajax同步请求造成浏览器假死的问题
2018/01/18 Javascript
react中实现搜索结果中关键词高亮显示
2018/07/31 Javascript
微信小程序实现跑马灯效果
2020/10/21 Javascript
其实你可以少写点if else与switch(推荐)
2019/01/10 Javascript
layer.js之回调销毁对话框的例子
2019/09/11 Javascript
Vue项目打包部署到apache服务器的方法步骤
2021/02/01 Vue.js
[01:32]2016国际邀请赛中国区预选赛IG战队首日赛后采访
2016/06/27 DOTA
[04:16]完美世界DOTA2联赛PWL S2 集锦第一期
2020/11/23 DOTA
Python中的集合类型知识讲解
2015/08/19 Python
dataframe设置两个条件取值的实例
2018/04/12 Python
在python带权重的列表中随机取值的方法
2019/01/23 Python
python面试题小结附答案实例代码
2019/04/11 Python
Python matplotlib生成图片背景透明的示例代码
2019/08/30 Python
Python自动化完成tb喵币任务的操作方法
2019/10/30 Python
python的pip有什么用
2020/06/17 Python
鼠标滚轮事件和Mac触控板双指事件
2019/12/23 HTML / CSS
JNI的定义
2012/11/25 面试题
ORACLE第二个十问
2013/12/14 面试题
Set里的元素是不能重复的,那么用什么方法来区分重复与否呢?
2016/08/18 面试题
母亲节感恩活动记录
2014/03/16 职场文书
python tkinter Entry控件的焦点移动操作
2021/05/22 Python
spring cloud 配置中心客户端启动遇到的问题
2021/09/25 Java/Android
Golang Web 框架Iris安装部署
2022/08/14 Python