Python图像处理库PIL中图像格式转换的实现


Posted in Python onFebruary 26, 2020

在数字图像处理中,针对不同的图像格式有其特定的处理算法。所以,在做图像处理之前,我们需要考虑清楚自己要基于哪种格式的图像进行算法设计及其实现。本文基于这个需求,使用python中的图像处理库PIL来实现不同图像格式的转换。

对于彩色图像,不管其图像格式是PNG,还是BMP,或者JPG,在PIL中,使用Image模块的open()函数打开后,返回的图像对象的模式都是“RGB”。而对于灰度图像,不管其图像格式是PNG,还是BMP,或者JPG,打开后,其模式为“L”。

通过之前的博客对Image模块的介绍,对于PNG、BMP和JPG彩色图像格式之间的互相转换都可以通过Image模块的open()和save()函数来完成。具体说就是,在打开这些图像时,PIL会将它们解码为三通道的“RGB”图像。用户可以基于这个“RGB”图像,对其进行处理。处理完毕,使用函数save(),可以将处理结果保存成PNG、BMP和JPG中任何格式。这样也就完成了几种格式之间的转换。同理,其他格式的彩色图像也可以通过这种方式完成转换。当然,对于不同格式的灰度图像,也可通过类似途径完成,只是PIL解码后是模式为“L”的图像。

这里,我想详细介绍一下Image模块的convert()函数,用于不同模式图像之间的转换。

Convert()函数有三种形式的定义,它们定义形式如下:

im.convert(mode)⇒image
im.convert(“P”, **options)⇒image
im.convert(mode, matrix)⇒image

使用不同的参数,将当前的图像转换为新的模式,并产生新的图像作为返回值。

本文我们采样的图片是lena的照片:

模式“1”:

>>> from PIL import Image
>>> lena = Image.open("lena.bmp")
>>> lena.mode
'RGB'
>>> lena.getpixel((0,0))
(226, 137, 125)
>>> lena_1 = lena.convert("1")
>>> lena_1.mode
'1'
>>> lena_1.size
(512, 512)
>>> lena_1.getpixel((0,0))
>>> lena_1.getpixel((10,10))
>>> lena_1.getpixel((10,120))
>>> lena_1.getpixel((130,120))
>>> lena_1.show()

结果:

Python图像处理库PIL中图像格式转换的实现

模式“L”:

模式“L”为灰色图像,它的每个像素用8个bit表示,0表示黑,255表示白,其他数字表示不同的灰度。在PIL中,从模式“RGB”转换为“L”模式是按照下面的公式转换的:

L = R * 299/1000 + G * 587/1000+ B * 114/1000

下面我们将lena图像转换为“L”图像。

>>> lena_L = lena.convert("L")
>>> lena_L.mode
'L'
>>> lena_L.size
(512, 512)
>>> lena_L.getpixel((0,0))
>>> lena.getpixel((0,0))
(226, 137, 125)
>>> lena_L.show()
>>> lena_L.save("lena_l.bmp")
>>>

对于第一个像素点,原始图像lena为(197, 111, 78),其转换为灰色值为:

197 *299/1000 + 111 * 587/1000 + 78 * 114/1000= 132.952,PIL中只取了整数部分,即为132。

转换后的图像lena_L如下:

Python图像处理库PIL中图像格式转换的实现

模式P:

模式“P”为8位彩色图像,它的每个像素用8个bit表示,其对应的彩色值是按照调色板查询出来的。

下面我们使用默认的调色板将lena图像转换为“P”图像。

example:

>>> lena_P = lena.convert("P")
>>> lena_P.mode
'P'
>>> lena_P.getpixel((0,0))

结果:

Python图像处理库PIL中图像格式转换的实现

模式“RGBA”:

模式“RGBA”为32位彩色图像,它的每个像素用32个bit表示,其中24bit表示红色、绿色和蓝色三个通道,另外8bit表示alpha通道,即透明通道。

下面我们将模式为“RGB”的lena图像转换为“RGBA”图像。

>>> lena_rgba = lena.convert("RGBA")
>>> 
>>> 
>>> 
>>> lena_rgba.mode
'RGBA'
>>> lena_rgba.getpixel((0,0))
(226, 137, 125, 255)
>>> lena_rgba.getpixel((0,1))
(226, 137, 125, 255)
>>> lena_rgba.show()

Python图像处理库PIL中图像格式转换的实现

模式“CMYK”:

模式“CMYK”为32位彩色图像,它的每个像素用32个bit表示。模式“CMYK”就是印刷四分色模式,它是彩色印刷时采用的一种套色模式,利用色料的三原色混色原理,加上黑色油墨,共计四种颜色混合叠加,形成所谓“全彩印刷”。

四种标准颜色是:C:Cyan =青色,又称为‘天蓝色'或是‘湛蓝'M:Magenta =品红色,又称为‘洋红色';Y:Yellow =黄色;K:Key Plate(blacK) =定位套版色(黑色)。

下面我们将模式为“RGB”的lena图像转换为“CMYK”图像。

>>> lena_cmyk = lena.convert("CMYK")
>>> lena_cmyk.mode
'CMYK'
>>> lena_cmyk.getpixel((0,0))
(29, 118, 130, 0)
>>> lena_cmyk.getpixel((0,1))
(29, 118, 130, 0)
>>> lena_cmyk.show()

从实例中可以得知PIL中“RGB”转换为“CMYK”的公式如下:

C = 255 - R
M = 255 - G
Y = 255 - B
K = 0

由于该转换公式比较简单,转换后的图像颜色有些失真。

转换后的图像lena_cmyk如下:

Python图像处理库PIL中图像格式转换的实现

模式“YCbCr”:

模式“YCbCr”为24位彩色图像,它的每个像素用24个bit表示。YCbCr其中Y是指亮度分量,Cb指蓝色色度分量,而Cr指红色色度分量。人的肉眼对视频的Y分量更敏感,因此在通过对色度分量进行子采样来减少色度分量后,肉眼将察觉不到的图像质量的变化。

模式“RGB”转换为“YCbCr”的公式如下:

Y= 0.257*R+0.504*G+0.098*B+16
Cb = -0.148*R-0.291*G+0.439*B+128
Cr = 0.439*R-0.368*G-0.071*B+128

下面我们将模式为“RGB”的lena图像转换为“YCbCr”图像。

>>> lena_ycbcr = lena.convert("YCbCr")
>>> lena_ycbcr.mode
'YCbCr'
>>> lena_ycbcr.getpixel((0,0))
(162, 107, 173)
>>> lena.getpixel((0,0))
(226, 137, 125)
>>>

按照公式,Y =0.257*197+0.564*111+0.098*78+16= 136.877

Cb=-0.148*197-0.291*111+0.439*78+128= 100.785
Cr = 0.439*197-0.368*111-0.071*78+128 = 168.097

由此可见,PIL中并非按照这个公式进行“RGB”到“YCbCr”的转换。

转换后的图像lena_ycbcr如下:

Python图像处理库PIL中图像格式转换的实现

模式“I”

模式“I”为32位整型灰色图像,它的每个像素用32个bit表示,0表示黑,255表示白,(0,255)之间的数字表示不同的灰度。在PIL中,从模式“RGB”转换为“I”模式是按照下面的公式转换的:

I = R * 299/1000 + G * 587/1000 + B * 114/1000

下面我们将模式为“RGB”的lena图像转换为“I”图像。

>>> lena_I = lena.convert("I")
>>> lena_I.mode
'I'
>>> lena_I.getpixel((0,0))
>>> lena_I.getpixel((0,1))
>>> lena_L = lena.convert("L")
>>> lena_L.getpixel((0,0))
>>> lena_L.getpixel((0,1))

从实验的结果看,模式“I”与模式“L”的结果是完全一样,只是模式“L”的像素是8bit,而模式“I”的像素是32bit。 

模式“F”

模式“F”为32位浮点灰色图像,它的每个像素用32个bit表示,0表示黑,255表示白,(0,255)之间的数字表示不同的灰度。在PIL中,从模式“RGB”转换为“F”模式是按照下面的公式转换的:

F = R * 299/1000+ G * 587/1000 + B * 114/1000

下面我们将模式为“RGB”的lena图像转换为“F”图像。

>>> lena_F = lena.convert("F")
>>> lena_F.mode
'F'
>>> lena_F.getpixel((0,0))
162.2429962158203
>>> lena_F.getpixel((0,1))
162.2429962158203
>>>

Python图像处理库PIL中图像格式转换的实现

模式“F”与模式“L”的转换公式是一样的,都是RGB转换为灰色值的公式,但模式“F”会保留小数部分,如实验中的数据.

以上就是Python图像处理库PIL中图像格式转换的实现的详细内容,更多关于PIL 图像格式转换的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
Windows下Eclipse+PyDev配置Python+PyQt4开发环境
May 17 Python
python制作爬虫爬取京东商品评论教程
Dec 16 Python
python Crypto模块的安装与使用方法
Dec 21 Python
windows下搭建python scrapy爬虫框架步骤
Dec 23 Python
解决在pycharm中显示额外的 figure 窗口问题
Jan 15 Python
Python实现的企业粉丝抽奖功能示例
Jul 26 Python
解决python有时候import不了当前的包问题
Aug 28 Python
详解python播放音频的三种方法
Sep 23 Python
基于python2.7实现图形密码生成器的实例代码
Nov 05 Python
Python实现socket非阻塞通讯功能示例
Nov 06 Python
matplotlib.pyplot画图并导出保存的实例
Dec 07 Python
Python常用配置文件ini、json、yaml读写总结
Jul 09 Python
Python基础之字典常见操作经典实例详解
Feb 26 #Python
python3使用Pillow、tesseract-ocr与pytesseract模块的图片识别的方法
Feb 26 #Python
python解释器pycharm安装及环境变量配置教程图文详解
Feb 26 #Python
Python如何使用turtle库绘制图形
Feb 26 #Python
Python解释器以及PyCharm的安装教程图文详解
Feb 26 #Python
Python定时器线程池原理详解
Feb 26 #Python
python ImageDraw类实现几何图形的绘制与文字的绘制
Feb 26 #Python
You might like
深入extjs与php参数交互的详解
2013/06/25 PHP
浅谈PHP定义命令空间的几个注意点(推荐)
2016/10/29 PHP
PHP类与对象后期静态绑定操作实例详解
2018/12/20 PHP
PHP count_chars()函数讲解
2019/02/14 PHP
解决thinkphp5未定义变量会抛出异常,页面错误,请稍后再试的问题
2019/10/16 PHP
JavaScript 特殊字符
2007/04/05 Javascript
javascript 屏蔽鼠标键盘的几段代码
2008/01/02 Javascript
msn上的tab功能Firefox对childNodes处理的一个BUG
2008/01/21 Javascript
js setTimeout 参数传递使用介绍
2013/08/13 Javascript
文本框中禁止非数字字符输入比如手机号码、邮编
2013/08/19 Javascript
jQuery实现dialog设置focus焦点的方法
2015/06/10 Javascript
AngularJS 依赖注入详解和简单实例
2016/07/28 Javascript
微信小程序 自定义对话框实例详解
2017/01/20 Javascript
AngularJS使用ng-class动态增减class样式的方法示例
2017/05/18 Javascript
javascript 产生随机数的几种方法总结
2017/09/26 Javascript
Vue框架之goods组件开发详解
2018/01/25 Javascript
Vue服务端渲染实践之Web应用首屏耗时最优化方案
2019/03/22 Javascript
微信小程序基于Taro的分享图片功能实践详解
2019/07/12 Javascript
通过实例解析vuejs如何实现调试代码
2020/07/16 Javascript
Jquery如何使用animation动画效果改变背景色的代码
2020/07/20 jQuery
vue中echarts引入中国地图的案例
2020/07/28 Javascript
利用Vue实现简易播放器的完整代码
2020/12/30 Vue.js
Python 深入理解yield
2008/09/06 Python
Python操作sqlite3快速、安全插入数据(防注入)的实例
2014/04/26 Python
零基础写python爬虫之使用urllib2组件抓取网页内容
2014/11/04 Python
Python通过PIL获取图片主要颜色并和颜色库进行对比的方法
2015/03/19 Python
一篇文章入门Python生态系统(Python新手入门指导)
2015/12/11 Python
对python中dict和json的区别详解
2018/12/18 Python
python模块之subprocess模块级方法的使用
2019/03/26 Python
Keras设定GPU使用内存大小方式(Tensorflow backend)
2020/05/22 Python
Python3 requests模块如何模仿浏览器及代理
2020/06/15 Python
好的演讲稿开场白
2013/12/30 职场文书
中专生毕业个人鉴定
2014/02/26 职场文书
大学生创业事迹材料
2014/12/30 职场文书
创业计划书之闲置物品置换中心
2019/12/25 职场文书
微信小程序基础教程之echart的使用
2021/06/01 Javascript