Python图像处理库PIL中图像格式转换的实现


Posted in Python onFebruary 26, 2020

在数字图像处理中,针对不同的图像格式有其特定的处理算法。所以,在做图像处理之前,我们需要考虑清楚自己要基于哪种格式的图像进行算法设计及其实现。本文基于这个需求,使用python中的图像处理库PIL来实现不同图像格式的转换。

对于彩色图像,不管其图像格式是PNG,还是BMP,或者JPG,在PIL中,使用Image模块的open()函数打开后,返回的图像对象的模式都是“RGB”。而对于灰度图像,不管其图像格式是PNG,还是BMP,或者JPG,打开后,其模式为“L”。

通过之前的博客对Image模块的介绍,对于PNG、BMP和JPG彩色图像格式之间的互相转换都可以通过Image模块的open()和save()函数来完成。具体说就是,在打开这些图像时,PIL会将它们解码为三通道的“RGB”图像。用户可以基于这个“RGB”图像,对其进行处理。处理完毕,使用函数save(),可以将处理结果保存成PNG、BMP和JPG中任何格式。这样也就完成了几种格式之间的转换。同理,其他格式的彩色图像也可以通过这种方式完成转换。当然,对于不同格式的灰度图像,也可通过类似途径完成,只是PIL解码后是模式为“L”的图像。

这里,我想详细介绍一下Image模块的convert()函数,用于不同模式图像之间的转换。

Convert()函数有三种形式的定义,它们定义形式如下:

im.convert(mode)⇒image
im.convert(“P”, **options)⇒image
im.convert(mode, matrix)⇒image

使用不同的参数,将当前的图像转换为新的模式,并产生新的图像作为返回值。

本文我们采样的图片是lena的照片:

模式“1”:

>>> from PIL import Image
>>> lena = Image.open("lena.bmp")
>>> lena.mode
'RGB'
>>> lena.getpixel((0,0))
(226, 137, 125)
>>> lena_1 = lena.convert("1")
>>> lena_1.mode
'1'
>>> lena_1.size
(512, 512)
>>> lena_1.getpixel((0,0))
>>> lena_1.getpixel((10,10))
>>> lena_1.getpixel((10,120))
>>> lena_1.getpixel((130,120))
>>> lena_1.show()

结果:

Python图像处理库PIL中图像格式转换的实现

模式“L”:

模式“L”为灰色图像,它的每个像素用8个bit表示,0表示黑,255表示白,其他数字表示不同的灰度。在PIL中,从模式“RGB”转换为“L”模式是按照下面的公式转换的:

L = R * 299/1000 + G * 587/1000+ B * 114/1000

下面我们将lena图像转换为“L”图像。

>>> lena_L = lena.convert("L")
>>> lena_L.mode
'L'
>>> lena_L.size
(512, 512)
>>> lena_L.getpixel((0,0))
>>> lena.getpixel((0,0))
(226, 137, 125)
>>> lena_L.show()
>>> lena_L.save("lena_l.bmp")
>>>

对于第一个像素点,原始图像lena为(197, 111, 78),其转换为灰色值为:

197 *299/1000 + 111 * 587/1000 + 78 * 114/1000= 132.952,PIL中只取了整数部分,即为132。

转换后的图像lena_L如下:

Python图像处理库PIL中图像格式转换的实现

模式P:

模式“P”为8位彩色图像,它的每个像素用8个bit表示,其对应的彩色值是按照调色板查询出来的。

下面我们使用默认的调色板将lena图像转换为“P”图像。

example:

>>> lena_P = lena.convert("P")
>>> lena_P.mode
'P'
>>> lena_P.getpixel((0,0))

结果:

Python图像处理库PIL中图像格式转换的实现

模式“RGBA”:

模式“RGBA”为32位彩色图像,它的每个像素用32个bit表示,其中24bit表示红色、绿色和蓝色三个通道,另外8bit表示alpha通道,即透明通道。

下面我们将模式为“RGB”的lena图像转换为“RGBA”图像。

>>> lena_rgba = lena.convert("RGBA")
>>> 
>>> 
>>> 
>>> lena_rgba.mode
'RGBA'
>>> lena_rgba.getpixel((0,0))
(226, 137, 125, 255)
>>> lena_rgba.getpixel((0,1))
(226, 137, 125, 255)
>>> lena_rgba.show()

Python图像处理库PIL中图像格式转换的实现

模式“CMYK”:

模式“CMYK”为32位彩色图像,它的每个像素用32个bit表示。模式“CMYK”就是印刷四分色模式,它是彩色印刷时采用的一种套色模式,利用色料的三原色混色原理,加上黑色油墨,共计四种颜色混合叠加,形成所谓“全彩印刷”。

四种标准颜色是:C:Cyan =青色,又称为‘天蓝色'或是‘湛蓝'M:Magenta =品红色,又称为‘洋红色';Y:Yellow =黄色;K:Key Plate(blacK) =定位套版色(黑色)。

下面我们将模式为“RGB”的lena图像转换为“CMYK”图像。

>>> lena_cmyk = lena.convert("CMYK")
>>> lena_cmyk.mode
'CMYK'
>>> lena_cmyk.getpixel((0,0))
(29, 118, 130, 0)
>>> lena_cmyk.getpixel((0,1))
(29, 118, 130, 0)
>>> lena_cmyk.show()

从实例中可以得知PIL中“RGB”转换为“CMYK”的公式如下:

C = 255 - R
M = 255 - G
Y = 255 - B
K = 0

由于该转换公式比较简单,转换后的图像颜色有些失真。

转换后的图像lena_cmyk如下:

Python图像处理库PIL中图像格式转换的实现

模式“YCbCr”:

模式“YCbCr”为24位彩色图像,它的每个像素用24个bit表示。YCbCr其中Y是指亮度分量,Cb指蓝色色度分量,而Cr指红色色度分量。人的肉眼对视频的Y分量更敏感,因此在通过对色度分量进行子采样来减少色度分量后,肉眼将察觉不到的图像质量的变化。

模式“RGB”转换为“YCbCr”的公式如下:

Y= 0.257*R+0.504*G+0.098*B+16
Cb = -0.148*R-0.291*G+0.439*B+128
Cr = 0.439*R-0.368*G-0.071*B+128

下面我们将模式为“RGB”的lena图像转换为“YCbCr”图像。

>>> lena_ycbcr = lena.convert("YCbCr")
>>> lena_ycbcr.mode
'YCbCr'
>>> lena_ycbcr.getpixel((0,0))
(162, 107, 173)
>>> lena.getpixel((0,0))
(226, 137, 125)
>>>

按照公式,Y =0.257*197+0.564*111+0.098*78+16= 136.877

Cb=-0.148*197-0.291*111+0.439*78+128= 100.785
Cr = 0.439*197-0.368*111-0.071*78+128 = 168.097

由此可见,PIL中并非按照这个公式进行“RGB”到“YCbCr”的转换。

转换后的图像lena_ycbcr如下:

Python图像处理库PIL中图像格式转换的实现

模式“I”

模式“I”为32位整型灰色图像,它的每个像素用32个bit表示,0表示黑,255表示白,(0,255)之间的数字表示不同的灰度。在PIL中,从模式“RGB”转换为“I”模式是按照下面的公式转换的:

I = R * 299/1000 + G * 587/1000 + B * 114/1000

下面我们将模式为“RGB”的lena图像转换为“I”图像。

>>> lena_I = lena.convert("I")
>>> lena_I.mode
'I'
>>> lena_I.getpixel((0,0))
>>> lena_I.getpixel((0,1))
>>> lena_L = lena.convert("L")
>>> lena_L.getpixel((0,0))
>>> lena_L.getpixel((0,1))

从实验的结果看,模式“I”与模式“L”的结果是完全一样,只是模式“L”的像素是8bit,而模式“I”的像素是32bit。 

模式“F”

模式“F”为32位浮点灰色图像,它的每个像素用32个bit表示,0表示黑,255表示白,(0,255)之间的数字表示不同的灰度。在PIL中,从模式“RGB”转换为“F”模式是按照下面的公式转换的:

F = R * 299/1000+ G * 587/1000 + B * 114/1000

下面我们将模式为“RGB”的lena图像转换为“F”图像。

>>> lena_F = lena.convert("F")
>>> lena_F.mode
'F'
>>> lena_F.getpixel((0,0))
162.2429962158203
>>> lena_F.getpixel((0,1))
162.2429962158203
>>>

Python图像处理库PIL中图像格式转换的实现

模式“F”与模式“L”的转换公式是一样的,都是RGB转换为灰色值的公式,但模式“F”会保留小数部分,如实验中的数据.

以上就是Python图像处理库PIL中图像格式转换的实现的详细内容,更多关于PIL 图像格式转换的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
python 将字符串转换成字典dict
Mar 24 Python
Python自然语言处理之词干,词形与最大匹配算法代码详解
Nov 16 Python
python读文件保存到字典,修改字典并写入新文件的实例
Apr 23 Python
使用Django启动命令行及执行脚本的方法
May 29 Python
python3解析库BeautifulSoup4的安装配置与基本用法
Jun 26 Python
Python3中内置类型bytes和str用法及byte和string之间各种编码转换 问题
Sep 27 Python
Python+OpenCV感兴趣区域ROI提取方法
Jan 10 Python
Python面向对象思想与应用入门教程【类与对象】
Apr 12 Python
python 实现将多条曲线画在一幅图上的方法
Jul 07 Python
Python中IP地址处理IPy模块的方法
Aug 16 Python
Django如何实现上传图片功能
Aug 16 Python
Python web如何在IIS发布应用过程解析
May 27 Python
Python基础之字典常见操作经典实例详解
Feb 26 #Python
python3使用Pillow、tesseract-ocr与pytesseract模块的图片识别的方法
Feb 26 #Python
python解释器pycharm安装及环境变量配置教程图文详解
Feb 26 #Python
Python如何使用turtle库绘制图形
Feb 26 #Python
Python解释器以及PyCharm的安装教程图文详解
Feb 26 #Python
Python定时器线程池原理详解
Feb 26 #Python
python ImageDraw类实现几何图形的绘制与文字的绘制
Feb 26 #Python
You might like
php实现将数组转换为XML的方法
2015/03/09 PHP
jQuery DOM操作小结与实例
2010/01/07 Javascript
IE之动态添加DOM节点触发window.resize事件
2010/07/27 Javascript
jquery 按键盘上的enter事件
2014/05/11 Javascript
使用typeof判断function是否存在于上下文
2014/08/14 Javascript
Jquery遍历Json数据的方法
2015/04/20 Javascript
jquery判断checkbox是否选中及改变checkbox状态的实现方法
2016/05/26 Javascript
JavaScript自动点击链接 防止绕过浏览器访问的方法
2017/01/19 Javascript
学习使用Bootstrap栅格系统
2017/05/11 Javascript
Vue.js与 ASP.NET Core 服务端渲染功能整合
2017/11/16 Javascript
纯js代码生成可搜索选择下拉列表的实例
2018/01/11 Javascript
node.js通过axios实现网络请求的方法
2018/03/05 Javascript
json对象及数组键值的深度大小写转换问题详解
2018/03/30 Javascript
Bootstrap模态对话框中显示动态内容的方法
2018/08/10 Javascript
浅谈Node框架接入ELK实践总结
2019/02/22 Javascript
node 版本切换的实现
2020/02/02 Javascript
详解vite+ts快速搭建vue3项目以及介绍相关特性
2021/02/25 Vue.js
Python多线程实例教程
2014/09/06 Python
详解Python的Django框架中的模版继承
2015/07/16 Python
pandas数值计算与排序方法
2018/04/12 Python
查看TensorFlow checkpoint文件中的变量名和对应值方法
2018/06/14 Python
Python实现简单的用户交互方法详解
2018/09/25 Python
解决pyinstaller打包发布后的exe文件打开控制台闪退的问题
2019/06/21 Python
django 单表操作实例详解
2019/07/30 Python
Python帮你识破双11的套路
2019/11/11 Python
scrapy redis配置文件setting参数详解
2020/11/18 Python
Myprotein瑞典官方网站:畅销欧洲英国运动营养品牌
2018/01/22 全球购物
荷兰手表网站:Watch2Day
2018/07/02 全球购物
Shopee菲律宾:在线购买和出售
2019/11/25 全球购物
国贸专业自荐信范文
2014/03/02 职场文书
史上最全的军训拉歌口号
2015/12/25 职场文书
Nginx进程管理和重载原理详解
2021/04/22 Servers
PL350与SW11的比较
2021/04/22 无线电
golang的文件创建及读写操作
2022/04/14 Golang
Ruby使用Mysql2连接操作MySQL
2022/04/19 Ruby
CSS 实现角标效果的完整代码
2022/06/28 HTML / CSS