如何通过python实现人脸识别验证


Posted in Python onJanuary 17, 2020

这篇文章主要介绍了如何通过python实现人脸识别验证,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

直接上代码,此案例是根据https://github.com/caibojian/face_login修改的,识别率不怎么好,有时挡了半个脸还是成功的

# -*- coding: utf-8 -*-
# __author__="maple"
"""
       ┏┓   ┏┓
      ┏┛┻━━━┛┻┓
      ┃   ☃   ┃
      ┃ ┳┛ ┗┳ ┃
      ┃   ┻   ┃
      ┗━┓   ┏━┛
        ┃   ┗━━━┓
        ┃ 神兽保佑  ┣┓
        ┃ 永无BUG!  ┏┛
        ┗┓┓┏━┳┓┏┛
         ┃┫┫ ┃┫┫
         ┗┻┛ ┗┻┛
"""
import base64
import cv2
import time
from io import BytesIO
from tensorflow import keras
from PIL import Image
from pymongo import MongoClient
import tensorflow as tf
import face_recognition
import numpy as np
#mongodb连接
conn = MongoClient('mongodb://root:123@localhost:27017/')
db = conn.myface #连接mydb数据库,没有则自动创建
user_face = db.user_face #使用test_set集合,没有则自动创建
face_images = db.face_images


lables = []
datas = []
INPUT_NODE = 128
LATER1_NODE = 200
OUTPUT_NODE = 0
TRAIN_DATA_SIZE = 0
TEST_DATA_SIZE = 0


def generateds():
  get_out_put_node()
  train_x, train_y, test_x, test_y = np.array(datas),np.array(lables),np.array(datas),np.array(lables)
  return train_x, train_y, test_x, test_y

def get_out_put_node():
  for item in face_images.find():
    lables.append(item['user_id'])
    datas.append(item['face_encoding'])
  OUTPUT_NODE = len(set(lables))
  TRAIN_DATA_SIZE = len(lables)
  TEST_DATA_SIZE = len(lables)
  return OUTPUT_NODE, TRAIN_DATA_SIZE, TEST_DATA_SIZE

# 验证脸部信息
def predict_image(image):
  model = tf.keras.models.load_model('face_model.h5',compile=False)
  face_encode = face_recognition.face_encodings(image)
  result = []
  for j in range(len(face_encode)):
    predictions1 = model.predict(np.array(face_encode[j]).reshape(1, 128))
    print(predictions1)
    if np.max(predictions1[0]) > 0.90:
      print(np.argmax(predictions1[0]).dtype)
      pred_user = user_face.find_one({'id': int(np.argmax(predictions1[0]))})
      print('第%d张脸是%s' % (j+1, pred_user['user_name']))
      result.append(pred_user['user_name'])
  return result

# 保存脸部信息
def save_face(pic_path,uid):
  image = face_recognition.load_image_file(pic_path)
  face_encode = face_recognition.face_encodings(image)
  print(face_encode[0].shape)
  if(len(face_encode) == 1):
    face_image = {
      'user_id': uid,
      'face_encoding':face_encode[0].tolist()
    }
    face_images.insert_one(face_image)

# 训练脸部信息
def train_face():
  train_x, train_y, test_x, test_y = generateds()
  dataset = tf.data.Dataset.from_tensor_slices((train_x, train_y))
  dataset = dataset.batch(32)
  dataset = dataset.repeat()
  OUTPUT_NODE, TRAIN_DATA_SIZE, TEST_DATA_SIZE = get_out_put_node()
  model = keras.Sequential([
    keras.layers.Dense(128, activation=tf.nn.relu),
    keras.layers.Dense(128, activation=tf.nn.relu),
    keras.layers.Dense(OUTPUT_NODE, activation=tf.nn.softmax)
  ])

  model.compile(optimizer=tf.compat.v1.train.AdamOptimizer(),
        loss='sparse_categorical_crossentropy',
        metrics=['accuracy'])
  steps_per_epoch = 30
  if steps_per_epoch > len(train_x):
    steps_per_epoch = len(train_x)
  model.fit(dataset, epochs=10, steps_per_epoch=steps_per_epoch)

  model.save('face_model.h5')



def register_face(user):
  if user_face.find({"user_name": user}).count() > 0:
    print("用户已存在")
    return
  video_capture=cv2.VideoCapture(0)
  # 在MongoDB中使用sort()方法对数据进行排序,sort()方法可以通过参数指定排序的字段,并使用 1 和 -1 来指定排序的方式,其中 1 为升序,-1为降序。
  finds = user_face.find().sort([("id", -1)]).limit(1)
  uid = 0
  if finds.count() > 0:
    uid = finds[0]['id'] + 1
  print(uid)
  user_info = {
    'id': uid,
    'user_name': user,
    'create_time': time.time(),
    'update_time': time.time()
  }
  user_face.insert_one(user_info)

  while 1:
    # 获取一帧视频
    ret, frame = video_capture.read()
    # 窗口显示
    cv2.imshow('Video',frame)
    # 调整角度后连续拍5张图片
    if cv2.waitKey(1) & 0xFF == ord('q'):
      for i in range(1,6):
        cv2.imwrite('Myface{}.jpg'.format(i), frame)
        with open('Myface{}.jpg'.format(i),"rb")as f:
          img=f.read()
          img_data = BytesIO(img)
          im = Image.open(img_data)
          im = im.convert('RGB')
          imgArray = np.array(im)
          faces = face_recognition.face_locations(imgArray)
          save_face('Myface{}.jpg'.format(i),uid)
      break

  train_face()
  video_capture.release()
  cv2.destroyAllWindows()


def rec_face():
  video_capture = cv2.VideoCapture(0)
  while 1:
    # 获取一帧视频
    ret, frame = video_capture.read()
    # 窗口显示
    cv2.imshow('Video',frame)
    # 验证人脸的5照片
    if cv2.waitKey(1) & 0xFF == ord('q'):
      for i in range(1,6):
        cv2.imwrite('recface{}.jpg'.format(i), frame)
      break

  res = []
  for i in range(1, 6):
    with open('recface{}.jpg'.format(i),"rb")as f:
      img=f.read()
      img_data = BytesIO(img)
      im = Image.open(img_data)
      im = im.convert('RGB')
      imgArray = np.array(im)
      predict = predict_image(imgArray)
      if predict:
        res.extend(predict)

  b = set(res) # {2, 3}
  if len(b) == 1 and len(res) >= 3:
    print(" 验证成功")
  else:
    print(" 验证失败")

if __name__ == '__main__':
  register_face("maple")
  rec_face()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python实现zencart产品数据导入到magento(python导入数据)
Apr 03 Python
从零学Python之引用和类属性的初步理解
May 15 Python
python删除特定文件的方法
Jul 30 Python
详解Python爬虫的基本写法
Jan 08 Python
python操作oracle的完整教程分享
Jan 30 Python
Python 中包/模块的 `import` 操作代码
Apr 22 Python
pycharm中显示CSS提示的知识点总结
Jul 29 Python
python通过SSH登陆linux并操作的实现
Oct 10 Python
Python如何使用argparse模块处理命令行参数
Dec 11 Python
Python如何输出整数
Jun 07 Python
Python基础教程(一)——Windows搭建开发Python开发环境
Jul 20 Python
详解Pycharm第三方库的安装及使用方法
Dec 29 Python
Python-openCV读RGB通道图实例
Jan 17 #Python
OpenCV python sklearn随机超参数搜索的实现
Jan 17 #Python
python numpy 矩阵堆叠实例
Jan 17 #Python
Python利用Scrapy框架爬取豆瓣电影示例
Jan 17 #Python
Python下利用BeautifulSoup解析HTML的实现
Jan 17 #Python
pytorch forward两个参数实例
Jan 17 #Python
Python实现CNN的多通道输入实例
Jan 17 #Python
You might like
安健A254立体声随身听的分析与打磨
2021/03/02 无线电
PHP zip扩展Linux下安装过程分享
2014/05/05 PHP
ThinkPHP行为扩展Behavior应用实例详解
2014/07/22 PHP
php实现的中文分词类完整实例
2017/02/06 PHP
通过ifame指向的页面高度调整iframe的高度
2006/10/05 Javascript
js判断IE6/IE7/FF的代码[XMLHttpRequest]
2011/02/16 Javascript
疯狂Jquery第一天(Jquery学习笔记)
2012/05/11 Javascript
当鼠标移动到图片上时跟随鼠标显示放大的图片效果
2013/06/06 Javascript
从数据结构的角度分析 for each in 比 for in 快的多
2013/07/07 Javascript
javascript模拟实现ajax加载框实例
2014/10/15 Javascript
JavaScript检查数字是否为整数或浮点数的方法
2015/06/09 Javascript
JavaScript实现自动消除按钮功能的方法
2015/08/05 Javascript
AngularJS 实现按需异步加载实例代码
2015/10/18 Javascript
JavaScript的Number对象的toString()方法
2015/12/18 Javascript
Bootstrap零基础学习第一课之模板
2016/07/18 Javascript
jQuery层次选择器用法示例
2016/09/09 Javascript
浅谈js键盘事件全面控制
2016/12/01 Javascript
Vue非父子组件通信详解
2017/06/12 Javascript
Vue项目实现简单的权限控制管理功能
2019/07/17 Javascript
解析原来浏览器原生支持JS Base64编码解码
2019/08/12 Javascript
5分钟教你用nodeJS手写一个mock数据服务器的方法
2019/09/10 NodeJs
JS实现滑动拼图验证功能完整示例
2020/03/29 Javascript
Vue+penlayers实现多边形绘制及展示
2020/12/24 Vue.js
Python中常见的数据类型小结
2015/08/29 Python
Selenium(Python web测试工具)基本用法详解
2018/08/10 Python
Python基于pillow库实现生成图片水印
2020/09/14 Python
pycharm配置python 设置pip安装源为豆瓣源
2021/02/05 Python
Fossil加拿大官网:化石手表、手袋、首饰及配饰
2019/04/23 全球购物
高中毕业自我鉴定
2013/12/19 职场文书
日化店促销方案
2014/03/26 职场文书
就业意向书范本
2015/05/11 职场文书
2015年大学辅导员工作总结
2015/05/12 职场文书
毕业论文致谢部分怎么写
2015/05/14 职场文书
教师调动申请报告
2015/05/18 职场文书
新闻发布会新闻稿
2015/07/17 职场文书
Oracle以逗号分隔的字符串拆分为多行数据实例详解
2021/07/16 Oracle