TensorFlow实现创建分类器


Posted in Python onFebruary 06, 2018

本文实例为大家分享了TensorFlow实现创建分类器的具体代码,供大家参考,具体内容如下

创建一个iris数据集的分类器。

加载样本数据集,实现一个简单的二值分类器来预测一朵花是否为山鸢尾。iris数据集有三类花,但这里仅预测是否是山鸢尾。导入iris数据集和工具库,相应地对原数据集进行转换。

# Combining Everything Together
#----------------------------------
# This file will perform binary classification on the
# iris dataset. We will only predict if a flower is
# I.setosa or not.
#
# We will create a simple binary classifier by creating a line
# and running everything through a sigmoid to get a binary predictor.
# The two features we will use are pedal length and pedal width.
#
# We will use batch training, but this can be easily
# adapted to stochastic training.

import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets
import tensorflow as tf
from tensorflow.python.framework import ops
ops.reset_default_graph()

# 导入iris数据集
# 根据目标数据是否为山鸢尾将其转换成1或者0。
# 由于iris数据集将山鸢尾标记为0,我们将其从0置为1,同时把其他物种标记为0。
# 本次训练只使用两种特征:花瓣长度和花瓣宽度,这两个特征在x-value的第三列和第四列
# iris.target = {0, 1, 2}, where '0' is setosa
# iris.data ~ [sepal.width, sepal.length, pedal.width, pedal.length]
iris = datasets.load_iris()
binary_target = np.array([1. if x==0 else 0. for x in iris.target])
iris_2d = np.array([[x[2], x[3]] for x in iris.data])

# 声明批量训练大小
batch_size = 20

# 初始化计算图
sess = tf.Session()

# 声明数据占位符
x1_data = tf.placeholder(shape=[None, 1], dtype=tf.float32)
x2_data = tf.placeholder(shape=[None, 1], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)

# 声明模型变量
# Create variables A and b (0 = x1 - A*x2 + b)
A = tf.Variable(tf.random_normal(shape=[1, 1]))
b = tf.Variable(tf.random_normal(shape=[1, 1]))

# 定义线性模型:
# 如果找到的数据点在直线以上,则将数据点代入x2-x1*A-b计算出的结果大于0;
# 同理找到的数据点在直线以下,则将数据点代入x2-x1*A-b计算出的结果小于0。
# x1 - A*x2 + b
my_mult = tf.matmul(x2_data, A)
my_add = tf.add(my_mult, b)
my_output = tf.subtract(x1_data, my_add)

# 增加TensorFlow的sigmoid交叉熵损失函数(cross entropy)
xentropy = tf.nn.sigmoid_cross_entropy_with_logits(logits=my_output, labels=y_target)

# 声明优化器方法
my_opt = tf.train.GradientDescentOptimizer(0.05)
train_step = my_opt.minimize(xentropy)

# 创建一个变量初始化操作
init = tf.global_variables_initializer()
sess.run(init)

# 运行迭代1000次
for i in range(1000):
  rand_index = np.random.choice(len(iris_2d), size=batch_size)
  # rand_x = np.transpose([iris_2d[rand_index]])
  # 传入三种数据:花瓣长度、花瓣宽度和目标变量
  rand_x = iris_2d[rand_index]
  rand_x1 = np.array([[x[0]] for x in rand_x])
  rand_x2 = np.array([[x[1]] for x in rand_x])
  #rand_y = np.transpose([binary_target[rand_index]])
  rand_y = np.array([[y] for y in binary_target[rand_index]])
  sess.run(train_step, feed_dict={x1_data: rand_x1, x2_data: rand_x2, y_target: rand_y})
  if (i+1)%200==0:
    print('Step #' + str(i+1) + ' A = ' + str(sess.run(A)) + ', b = ' + str(sess.run(b)))


# 绘图
# 获取斜率/截距
# Pull out slope/intercept
[[slope]] = sess.run(A)
[[intercept]] = sess.run(b)

# 创建拟合线
x = np.linspace(0, 3, num=50)
ablineValues = []
for i in x:
 ablineValues.append(slope*i+intercept)

# 绘制拟合曲线
setosa_x = [a[1] for i,a in enumerate(iris_2d) if binary_target[i]==1]
setosa_y = [a[0] for i,a in enumerate(iris_2d) if binary_target[i]==1]
non_setosa_x = [a[1] for i,a in enumerate(iris_2d) if binary_target[i]==0]
non_setosa_y = [a[0] for i,a in enumerate(iris_2d) if binary_target[i]==0]
plt.plot(setosa_x, setosa_y, 'rx', ms=10, mew=2, label='setosa')
plt.plot(non_setosa_x, non_setosa_y, 'ro', label='Non-setosa')
plt.plot(x, ablineValues, 'b-')
plt.xlim([0.0, 2.7])
plt.ylim([0.0, 7.1])
plt.suptitle('Linear Separator For I.setosa', fontsize=20)
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
plt.legend(loc='lower right')
plt.show()

输出:

Step #200 A = [[ 8.70572948]], b = [[-3.46638322]]
Step #400 A = [[ 10.21302414]], b = [[-4.720438]]
Step #600 A = [[ 11.11844635]], b = [[-5.53361702]]
Step #800 A = [[ 11.86427212]], b = [[-6.0110755]]
Step #1000 A = [[ 12.49524498]], b = [[-6.29990339]]

TensorFlow实现创建分类器

 以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python中的reduce内建函数使用方法指南
Aug 31 Python
Python二维码生成库qrcode安装和使用示例
Dec 16 Python
Python实现的简单文件传输服务器和客户端
Apr 08 Python
Linux下为不同版本python安装第三方库
Aug 31 Python
Python并发:多线程与多进程的详解
Jan 24 Python
python实现Virginia无密钥解密
Mar 20 Python
Python向excel中写入数据的方法
May 05 Python
用python生成与调用cntk模型代码演示方法
Aug 26 Python
PyTorch实现更新部分网络,其他不更新
Dec 31 Python
基于pygame实现童年掌机打砖块游戏
Feb 25 Python
使用Python matplotlib作图时,设置横纵坐标轴数值以百分比(%)显示
May 16 Python
Python 列表推导式需要注意的地方
Oct 23 Python
Python模拟随机游走图形效果示例
Feb 06 #Python
Python 12306抢火车票脚本 Python京东抢手机脚本
Feb 06 #Python
TensorFlow高效读取数据的方法示例
Feb 06 #Python
django使用xlwt导出excel文件实例代码
Feb 06 #Python
Python使用装饰器进行django开发实例代码
Feb 06 #Python
Python yield与实现方法代码分析
Feb 06 #Python
Django中间件工作流程及写法实例代码
Feb 06 #Python
You might like
如何开始收听短波广播
2021/03/01 无线电
PHP 开发工具
2006/12/06 PHP
PHP仿qq空间或朋友圈发布动态、评论动态、回复评论、删除动态或评论的功能(上)
2017/05/26 PHP
PHP快速导出百万级数据到CSV或者EXCEL文件
2020/11/27 PHP
js设置组合快捷键/tabindex功能的方法
2013/11/21 Javascript
iframe调用父页面函数示例详解
2014/07/17 Javascript
原生JS实现响应式瀑布流布局
2015/04/02 Javascript
jquery验证手机号是否正确实例讲解
2015/11/17 Javascript
盘点javascript 正则表达式中 中括号的【坑】
2016/03/16 Javascript
canvas知识总结
2017/01/25 Javascript
JS基于Location实现访问Url、重定向及刷新页面的方法分析
2018/12/03 Javascript
JS+HTML实现自定义上传图片按钮并显示图片功能的方法分析
2020/02/12 Javascript
在 Vue 中编写 SVG 图标组件的方法
2020/02/24 Javascript
解决vue项目中某一页面不想引用公共组件app.vue的问题
2020/08/14 Javascript
[06:30]DOTA2英雄梦之声_第15期_死亡先知
2014/06/21 DOTA
python网络编程学习笔记(二):socket建立网络客户端
2014/06/09 Python
Python简明入门教程
2015/08/04 Python
Python读取数据集并消除数据中的空行方法
2018/07/12 Python
python批量修改ssh密码的实现
2019/08/08 Python
python使用多线程编写tcp客户端程序
2019/09/02 Python
Python安装并操作redis实现流程详解
2020/10/13 Python
python 实现的车牌识别项目
2021/01/25 Python
中外合拍动画首获奥斯卡提名,“上海出品”《飞奔去月球》能否拿下最终大奖?
2021/03/16 国漫
巴西网上药房:onofre
2016/11/21 全球购物
服装行业创业计划书范文
2014/02/05 职场文书
国旗下的演讲稿
2014/05/08 职场文书
八荣八耻的活动方案
2014/08/16 职场文书
员工三分钟演讲稿
2014/08/19 职场文书
群众路线批评与自我批评发言稿
2014/10/16 职场文书
公司领导班子召开党的群众路线教育实践活动总结大会新闻稿
2014/10/21 职场文书
初中生散播谣言检讨书
2014/11/17 职场文书
先进班组事迹材料
2014/12/25 职场文书
发工资啦!教你用Python实现邮箱自动群发工资条
2021/05/10 Python
Nginx+Tomcat负载均衡集群的实现示例
2021/10/24 Servers
mysql如何查询连续记录
2022/05/11 MySQL
HttpClient实现文件上传功能
2022/08/14 Java/Android