golang 定时任务方面time.Sleep和time.Tick的优劣对比分析


Posted in Golang onMay 05, 2021

golang 写循环执行的定时任务,常见的有以下三种实现方式

1、time.Sleep方法:

for {
   time.Sleep(time.Second)
   fmt.Println("我在定时执行任务")
}

2、time.Tick函数:

t1:=time.Tick(3*time.Second)
for {
   select {
   case <-t1:
      fmt.Println("t1定时器")
   }
}

3、其中Tick定时任务

也可以先使用time.Ticker函数获取Ticker结构体,然后进行阻塞监听信息,这种方式可以手动选择停止定时任务,在停止任务时,减少对内存的浪费。

t:=time.NewTicker(time.Second)
for {
   select {
   case <-t.C:
      fmt.Println("t1定时器")
      t.Stop()
   }
}

其中第二种和第三种可以归为同一类

这三种定时器的实现原理

一般来说,你在使用执行定时任务的时候,一般旁人会劝你不要使用time.Sleep完成定时任务,但是为什么不能使用Sleep函数完成定时任务呢,它和Tick函数比,有什么劣势呢?这就需要我们去探讨阅读一下源码,分析一下它们之间的优劣性。

首先,我们研究一下Tick函数,func Tick(d Duration) <-chan Time

调用Tick函数会返回一个时间类型的channel,如果对channel稍微有些了解的话,我们首先会想到,既然是返回一个channel,在调用Tick方法的过程中,必然创建了goroutine,该Goroutine负责发送数据,唤醒被阻塞的定时任务。我在阅读源码之后,确实发现函数中go出去了一个协程,处理定时任务。

按照当前的理解,使用一个tick,需要go出去一个协程,效率和对内存空间的占用肯定不能比sleep函数强。我们需要继续阅读源码才拿获取到真理。

简单的调用过程我就不陈述了,我在这介绍一下核心结构体和方法(删除了部分判断代码,解释我写在表格中):

func (tb *timersBucket) addtimerLocked(t *timer) {
   t.i = len(tb.t)  //计算timersBucket中,当前定时任务的长度
   tb.t = append(tb.t, t)// 将当前定时任务加入timersBucket
   siftupTimer(tb.t, t.i)  //维护一个timer结构体的最小堆(四叉树),排序关键字为执行时间,即该定时任务下一次执行的时间
   if !tb.created {
      tb.created = true
      go timerproc(tb)// 如果还没有创建过管理定时任务的协程,则创建一个,执行通知管理timer的协程,最核心代码
   }
}

timersBucket,顾名思义,时间任务桶,是外界不可见的全局变量。每当有新的timer定时器任务时,会将timer加入到timersBucket中的timer切片。timerBucket结构体如下:

type timersBucket struct {
   lock         mutex //添加新定时任务时需要加锁(冲突点在于维护堆)
   t            []*timer //timer切片,构造方式为四叉树最小堆
}

func timerproc(tb *timersBucket) 详细介绍

可以称之为定时任务处理器,所有的定时任务都会加入timersBucket,然后在该函数中等待被处理。

等待被处理的timer,根据when字段(任务执行的时间,int类型,纳秒级别)构成一个最小堆,每次处理完成堆顶的某个timer时,会给它的when字段加上定时任务循环间隔时间(即Tick(d Duration) 中的d参数),然后重新维护堆,保证when最小的timer在堆顶。当堆中没有可以处理的timer(有timer,但是还不到执行时间),需要计算当前时间和堆顶中timer的任务执行时间差值delta,定时任务处理器沉睡delta段时间,等待被调度器唤醒。

核心代码如下(注释写在每行代码的后面,删除一些判断代码以及不利于阅读的非核心代码):

func timerproc(tb *timersBucket) {
   for {
      lock(&tb.lock) //加锁
      now := nanotime()  //当前时间的纳秒值
      delta := int64(-1)  //最近要执行的timer和当前时间的差值
      for {
         if len(tb.t) == 0 {
            delta = -1
            break
         }//当前无可执行timer,直接跳出该循环
         t := tb.t[0]
         delta = t.when - now //取when组小的的timer,计算于当前时间的差值
         if delta > 0 {
            break
         }// delta大于0,说明还未到发送channel时间,需要跳出循环去睡眠delta时间
         if t.period > 0 {
            // leave in heap but adjust next time to fire
            t.when += t.period * (1 + -delta/t.period)// 计算该timer下次执行任务的时间
            siftdownTimer(tb.t, 0) //调整堆
         } else {
            // remove from heap,如果没有设定下次执行时间,则将该timer从堆中移除(time.after和time.sleep函数即是只执行一次定时任务)
            last := len(tb.t) - 1
            if last > 0 {
               tb.t[0] = tb.t[last]
               tb.t[0].i = 0
            }
            tb.t[last] = nil
            tb.t = tb.t[:last]
            if last > 0 {
               siftdownTimer(tb.t, 0)
            }
            t.i = -1 // mark as removed
         }
         f := t.f
         arg := t.arg
         seq := t.seq
         unlock(&tb.lock)//解锁
         f(arg, seq) //在channel中发送time结构体,唤醒阻塞的协程
         lock(&tb.lock)
      }
      if delta < 0  {
         // No timers left - put goroutine to sleep.
         goparkunlock(&tb.lock, "timer goroutine (idle)", traceEvGoBlock, 1)
         continue
      }// delta小于0说明当前无定时任务,直接进行阻塞进行睡眠
      tb.sleeping = true
      tb.sleepUntil = now + delta
      unlock(&tb.lock)
      notetsleepg(&tb.waitnote, delta)  //睡眠delta时间,唤醒之后就可以执行在堆顶的定时任务了
   }
}

至此,time.Tick函数涉及到的主要功能就讲解结束了,总结一下就是启动定时任务时,会创建一个唯一协程,处理timer,所有的timer都在该协程中处理。

然后,我们再阅读一下sleep的源码实现,核心源码如下:

//go:linkname timeSleep time.Sleep
func timeSleep(ns int64) {
   *t = timer{} //创建一个定时任务
   t.when = nanotime() + ns //计算定时任务的执行时间点
   t.f = goroutineReady //执行方法
   tb.addtimerLocked(t)  //加入timer堆,并在timer定时任务执行协程中等待被执行
   goparkunlock(&tb.lock, "sleep", traceEvGoSleep, 2) //睡眠,等待定时任务协程通知唤醒
}

读了sleep的核心代码之后,是不是突然发现和Tick函数的内容很类似,都创建了timer,并加入了定时任务处理协程。神奇之处就在于,实际上这两个函数产生的timer都放入了同一个timer堆,都在定时任务处理协程中等待被处理。

优劣性对比,使用建议

现在我们知道了,Tick,Sleep,包括time.After函数,都使用的timer结构体,都会被放在同一个协程中统一处理,这样看起来使用Tick,Sleep并没有什么区别。

实际上是有区别的,Sleep是使用睡眠完成定时任务,需要被调度唤醒。Tick函数是使用channel阻塞当前协程,完成定时任务的执行。当前并不清楚golang 阻塞和睡眠对资源的消耗会有什么区别,这方面不能给出建议。

但是使用channel阻塞协程完成定时任务比较灵活,可以结合select设置超时时间以及默认执行方法,而且可以设置timer的主动关闭,以及不需要每次都生成一个timer(这方面节省系统内存,垃圾收回也需要时间)。

所以,建议使用time.Tick完成定时任务。

补充:Golang 定时器timer和ticker

两种类型的定时器:ticker和timer。两者有什么区别呢?请看如下代码:

ticker

package main
import (
        "fmt"
        "time"
)
func main() {
        d := time.Duration(time.Second*2)
        t := time.NewTicker(d)
        defer t.Stop()
        for {
                <- t.C
                fmt.Println("timeout...")
        }
}

output:

timeout…

timeout…

timeout…

解析

ticker只要定义完成,从此刻开始计时,不需要任何其他的操作,每隔固定时间都会触发。

timer

package main
import (
        "fmt"
        "time"
)
func main() {
        d := time.Duration(time.Second*2)
        t := time.NewTimer(d)
        defer t.Stop()
        for {
                <- t.C
                fmt.Println("timeout...")
  // need reset
  t.Reset(time.Second*2)
        }
}

output:

timeout…

timeout…

timeout…

解析

使用timer定时器,超时后需要重置,才能继续触发。

ticker 例子展示

package main
import (
        "fmt"
        "time"
)
func main() {
        t := time.NewTicker(3*time.Second)
        defer t.Stop()
        fmt.Println(time.Now())
        time.Sleep(4*time.Second)
        for {
                select {
                case <-t.C:
                        fmt.Println(time.Now())
                }
        }
}

output:

2018-04-02 19:08:22.2797 +0800 CST

2018-04-02 19:08:26.3087 +0800 CST

2018-04-02 19:08:28.2797 +0800 CST

2018-04-02 19:08:31.2797 +0800 CST

2018-04-02 19:08:34.2797 +0800 CST

以上为个人经验,希望能给大家一个参考,也希望大家多多支持三水点靠木。如有错误或未考虑完全的地方,望不吝赐教。

Golang 相关文章推荐
golang判断key是否在map中的代码
Apr 24 Golang
golang DNS服务器的简单实现操作
Apr 30 Golang
Golang: 内建容器的用法
May 05 Golang
解决goland 导入项目后import里的包报红问题
May 06 Golang
golang 实现时间戳和时间的转化
May 07 Golang
Go语言应该什么情况使用指针
Jul 25 Golang
Go 通过结构struct实现接口interface的问题
Oct 05 Golang
Go 语言中 20 个占位符的整理
Oct 16 Golang
Golang使用Panic与Recover进行错误捕获
Mar 22 Golang
Go语言grpc和protobuf
Apr 13 Golang
Golang 链表的学习和使用
Apr 19 Golang
Golang实现可重入锁的示例代码
May 25 Golang
golang日志包logger的用法详解
May 05 #Golang
golang elasticsearch Client的使用详解
May 05 #Golang
goland设置颜色和字体的操作
golang协程池模拟实现群发邮件功能
golang 比较浮点数的大小方式
May 02 #Golang
解决Golang中goroutine执行速度的问题
May 02 #Golang
解决golang结构体tag编译错误的问题
May 02 #Golang
You might like
百度工程师讲PHP函数的实现原理及性能分析(一)
2015/05/13 PHP
laravel框架中视图的基本使用方法分析
2019/11/23 PHP
javascript中将Object转换为String函数代码 (json str)
2012/04/29 Javascript
浅析XMLHttpRequest的缓存问题
2013/12/13 Javascript
js中运算符&amp;&amp; 和 || 的使用记录
2014/08/21 Javascript
jquery获取form表单input元素值的简单实例
2016/05/30 Javascript
原生js三级联动的简单实现代码
2016/06/07 Javascript
玩转JavaScript OOP - 类的实现详解
2016/06/08 Javascript
微信小程序实现传参数的几种方法示例
2018/01/10 Javascript
微信小程序 可搜索的地址选择实现详解
2019/08/28 Javascript
JS中async/await实现异步调用的方法
2019/08/28 Javascript
vue 实现通过vuex 存储值 在不同界面使用
2019/11/11 Javascript
[05:36]DOTA2 2015国际邀请赛中国区预选赛第四日TOP10
2015/05/29 DOTA
[56:57]LGD vs VP 2019DOTA2国际邀请赛淘汰赛 胜者组赛BO3 第一场 8.20.mp4
2019/08/22 DOTA
python使用cPickle模块序列化实例
2014/09/25 Python
Python自动连接ssh的方法
2015/03/07 Python
简述Python中的面向对象编程的概念
2015/04/27 Python
TensorFlow损失函数专题详解
2018/04/26 Python
浅谈Python traceback的优雅处理
2018/08/31 Python
Python编写带选项的命令行程序方法
2019/08/13 Python
Python多线程正确用法实例解析
2020/05/30 Python
keras 模型参数,模型保存,中间结果输出操作
2020/07/06 Python
Python暴力破解Mysql数据的示例
2020/11/09 Python
PyTorch预训练Bert模型的示例
2020/11/17 Python
HTML5 在canvas中绘制文本附效果图
2014/06/23 HTML / CSS
Lampenwelt德国:欧洲领先的灯具和照明在线商店
2018/08/05 全球购物
酒店服务与管理毕业生求职信
2013/11/02 职场文书
《锄禾》教学反思
2014/04/08 职场文书
工作分析计划书
2014/04/30 职场文书
保护环境倡议书300字
2014/05/19 职场文书
销售岗位职责范本
2014/06/12 职场文书
计生办班子群众路线教育实践活动个人对照检查材料思想汇报
2014/10/04 职场文书
专业见习报告范文
2014/11/03 职场文书
2014年派出所工作总结
2014/11/21 职场文书
读鲁迅先生的经典名言
2019/08/20 职场文书
Python自然语言处理之切分算法详解
2021/04/25 Python