Python制作数据预测集成工具(值得收藏)


Posted in Python onAugust 21, 2020

大数据预测是大数据最核心的应用,是它将传统意义的预测拓展到“现测”。大数据预测的优势体现在,它把一个非常困难的预测问题,转化为一个相对简单的描述问题,而这是传统小数据集根本无法企及的。从预测的角度看,大数据预测所得出的结果不仅仅是用于处理现实业务的简单、客观的结论,更是能用于帮助企业经营的决策。

在过去,人们的决策主要是依赖 20% 的结构化数据,而大数据预测则可以利用另外 80% 的非结构化数据来做决策。大数据预测具有更多的数据维度,更快的数据频度和更广的数据宽度。与小数据时代相比,大数据预测的思维具有 3 大改变:实样而非抽样;预测效率而非精确;相关关系而非因果关系。

而今天我们就将利用python制作可视化的大数据预测部分集成工具,其中数据在这里使用一个实验中的数据。普遍性的应用则直接从文件读取即可。其中的效果图如下:

Python制作数据预测集成工具(值得收藏)

实验前的准备

首先我们使用的python版本是3.6.5所用到的模块如下:

  • sklearn模块用来创建整个模型训练和保存调用以及算法的搭建框架等等。
  • numpy模块用来处理数据矩阵运算。
  • matplotlib模块用来可视化拟合模型效果。
  • Pillow库用来加载图片至GUI界面。
  • Pandas模块用来读取csv数据文件。
  • Tkinter用来创建GUI窗口程序。

数据的训练和训练的GUI窗口

经过算法比较,发现这里我们选择使用sklearn简单的多元回归进行拟合数据可以达到比较好的效果。

(1)首先是是数据的读取,通过设定选定文件夹函数来读取文件,加载数据的效果:

'''选择文件功能''' 
def selectPath(): 
  # 选择文件path_接收文件地址 
  path_ =tkinter.filedialog.askopenfilename() 
  # 通过replace函数替换绝对文件地址中的/来使文件可被程序读取 
  # 注意:\\转义后为\,所以\\\\转义后为\\ 
  path_ =path_.replace("/", "\\\\") 
  # path设置path_的值 
  path.set(path_) 
  return path 
 
# 得到的DataFrame读入所有数据 
data = pd.read_excel(FILENAME, header=0, usecols="A,B,C,D,E,F,G,H,I") 
# DataFrame转化为array 
DataArray = data.values 
# 读取已使用年限作为标签 
Y = DataArray[:, 8] 
# 读取其他参数作为自变量,影响因素 
X = DataArray[:, 0:8] 
# 字符串转变为整数 
for i in range(len(Y)): 
  Y[i] = int(Y[i].replace("年", "")) 
X = np.array(X) # 转化为array 
Y = np.array(Y) # 转化为array 
 
root = Tk() 
root.geometry("+500+260") 
# 背景图设置 
canvas = tk.Canvas(root, width=600, height=200, bd=0, highlightthickness=0) 
imgpath = '1.jpg' 
img = Image.open(imgpath) 
photo = ImageTk.PhotoImage(img) 
#背景图大小设置 
canvas.create_image(700, 400, image=photo) 
canvas.pack() 
path = StringVar() 
#标签名称位置 
label1=tk.Label(text = "目标路径:") 
label1.pack() 
e1=tk.Entry( textvariable = path) 
e1.pack() 
bn1=tk.Button(text = "路径选择", command = selectPath) 
bn1.pack() 
bn2=tk.Button(text = "模型训练", command = train) 
bn2.pack() 
bn3=tk.Button(text = "模型预测", command = test) 
bn3.pack() 
#标签按钮等放在背景图上 
canvas.create_window(50, 50, width=150, height=30, 
           window=label1) 
canvas.create_window(280, 50, width=300, height=30, 
           window=e1) 
canvas.create_window(510, 50, width=150, height=30, 
           window=bn1) 
canvas.create_window(50, 100, width=150, height=30, 
           window=bn2) 
canvas.create_window(510, 100, width=150, height=30, 
           window=bn3) 
 
root.mainloop()

效果如下可见:

Python制作数据预测集成工具(值得收藏)

(2)然后是数据的拟合和可视化模型效果:

# 模型拟合 
reg = LinearRegression() 
reg.fit(X, Y) 
# 预测效果 
predict = reg.predict(np.array([X[0]])) 
Y_predict = reg.predict(X) 
print(Y_predict) 
# 横坐标 
x_label = [] 
for i in range(len(Y)): 
  x_label.append(i) 
# 绘图 
fig, ax = plt.subplots() 
# 真实值分布散点图 
plt.scatter(x_label, Y) 
# 预测值分布散点图 
plt.scatter(x_label, Y_predict) 
# 预测值拟合直线图 
plt.plot(x_label, Y_predict) 
# 横纵坐标 
ax.set_xlabel('预测值与真实值模型拟合效果图') 
ax.set_ylabel('蓝色为真实值,黄色为预测值') 
# 将绘制的图形显示到tkinter:创建属于root的canvas画布,并将图f置于画布上 
canvas = FigureCanvasTkAgg(fig, master=root) 
canvas.draw() # 注意show方法已经过时了,这里改用draw 
canvas.get_tk_widget().pack() 
# matplotlib的导航工具栏显示上来(默认是不会显示它的) 
toolbar = NavigationToolbar2Tk(canvas, root) 
toolbar.update() 
canvas._tkcanvas.pack() 
#弹窗显示 
messagebox.showinfo(title='模型情况', message="模型训练完成!") 
其中的效果如下可见:

其中的效果如下可见:

Python制作数据预测集成工具(值得收藏)

模型的预测和使用

其中模型的预测主要通过两种方式进行预测,分别是:手动输入单个数据进行预测和读取文件进行预测。

其中手动输入数据进行预测需要设置更多的GUI按钮,其中代码如下:

#子窗口 
LOVE = Toplevel(root) 
LOVE.geometry("+100+260") 
LOVE.title = "模型测试" 
#子窗口各标签名 
label = ["上升沿斜率(v/us)", "下降沿斜率(v/us)", "脉宽(ns)", "低状态电平(mv)", "低电平方差(mv2)x10-3", "高状态电平(v)", "高电平方差(v2)", "信号质量因子"] 
Label(LOVE, text="1、输入参数预测", font=("微软雅黑", 20)).grid(row=0, column=0) 
#标签名称,字体位置 
Label(LOVE, text=label[0], font=("微软雅黑",10)).grid(row=1, column=0) 
Label(LOVE, text=label[1], font=("微软雅黑", 10)).grid(row=1, column=1) 
Label(LOVE, text=label[2], font=("微软雅黑", 10)).grid(row=1, column=2) 
Label(LOVE, text=label[3], font=("微软雅黑", 10)).grid(row=1, column=3) 
Label(LOVE, text=label[4], font=("微软雅黑", 10)).grid(row=1, column=4) 
Label(LOVE, text=label[5], font=("微软雅黑", 10)).grid(row=1, column=5) 
Label(LOVE, text=label[6], font=("微软雅黑", 10)).grid(row=1, column=6) 
Label(LOVE, text=label[7], font=("微软雅黑", 10)).grid(row=1, column=7) 
#编辑框位置和字体 
en1=tk.Entry(LOVE, font=("微软雅黑", 8)) 
en1.grid(row=2, column=0) 
en2=tk.Entry(LOVE, font=("微软雅黑", 8)) 
en2.grid(row=2, column=1) 
en3=tk.Entry(LOVE, font=("微软雅黑", 8)) 
en3.grid(row=2, column=2) 
en4=tk.Entry(LOVE, font=("微软雅黑", 8)) 
en4.grid(row=2, column=3) 
en5=tk.Entry(LOVE, font=("微软雅黑", 8)) 
en5.grid(row=2, column=4) 
en6=tk.Entry(LOVE, font=("微软雅黑", 8)) 
en6.grid(row=2, column=5) 
en7=tk.Entry(LOVE, font=("微软雅黑", 8)) 
en7.grid(row=2, column=6) 
en8=tk.Entry(LOVE, font=("微软雅黑", 8)) 
en8.grid(row=2, column=7) 
Label(LOVE, text="", font=("微软雅黑", 10)).grid(row=3, column=0) 
#测试输入框预测 
def pp(): 
  x=np.array([int(en1.get()),int(en2.get()),int(en3.get()),int(en4.get()),int(en5.get()),int(en6.get()),int(en7.get()),int(en8.get())]) 
  # 预测效果 
  predict = reg.predict(np.array([x])) 
  Label(LOVE, text="预测结果已使用年数为:"+str(predict[0])+"年", font=("微软雅黑", 10)).grid(row=4, column=3) 
  print(predict) 
Button(LOVE, text="预测:", font=("微软雅黑", 15),command=pp).grid(row=4, column=0) 
Label(LOVE, text="2、选择文件预测", font=("微软雅黑", 20)).grid(row=5, column=0) 
path1 = StringVar() 
label1 = tk.Label(LOVE,text="目标路径:", font=("微软雅黑", 10)) 
label1.grid(row=6, column=0) 
e1 = tk.Entry(LOVE,textvariable=path1, font=("微软雅黑", 10)) 
e1.grid(row=6, column=2) 
label = ["上升沿斜率(v/us)", "下降沿斜率(v/us)", "脉宽(ns)", "低状态电平(mv)", "低电平方差(mv2)x10-3", "高状态电平(v)", "高电平方差(v2)", 
       "信号质量因子"] 
  n = 0 
  for i in predict_value: 
    print(str(label) + "分别为" + str(X[n]) + "预测出来的结果为:" + str(i) + "年" + "\n") 
    f = open("预测结果.txt", "a") 
    f.write(str(label) + "分别为" + str(X[n]) + "预测出来的结果为:" + str(i) + "年" + "\n") 
    f.close() 
    f = open("result.txt", "a") 
    f.write(str(i) + "\n") 
    f.close() 
    n += 1 
  messagebox.showinfo(title='模型情况', message="预测结果保存在当前文件夹下的TXT文件中!") 
  os.system("result.txt") 
  os.system("预测结果.txt") 
Button(LOVE, text="预测:", font=("微软雅黑", 15), command=ppt).grid(row=7, column=0)

效果如下可见:

Python制作数据预测集成工具(值得收藏)

选择文件进行读取预测和模型训练数据的读取类似,代码如下:

#选择文件预测 
def selectPath1(): 
  # 选择文件path_接收文件地址 
  path_ =tkinter.filedialog.askopenfilename() 
  # 通过replace函数替换绝对文件地址中的/来使文件可被程序读取 
  # 注意:\\转义后为\,所以\\\\转义后为\\ 
  path_ =path_.replace("/", "\\\\") 
  # path设置path_的值 
  path1.set(path_) 
  return path 
bn1 = tk.Button(LOVE,text="路径选择", font=("微软雅黑", 10), command=selectPath1) 
bn1.grid(row=6, column=6) 
def ppt(): 
  try: 
    os.remove("预测结果.txt") 
    os.remove("result.txt") 
  except: 
    pass 
  # 文件的名字 
  FILENAME =path1.get() 
  # 禁用科学计数法 
  pd.set_option('float_format', lambda x: '%.3f' % x) 
  np.set_printoptions(threshold=np.inf) 
  # 得到的DataFrame读入所有数据 
  data =pd.read_excel(FILENAME, header=0, usecols="A,B,C,D,E,F,G,H") 
  # DataFrame转化为array 
  DataArray =data.values 
  # 读取其他参数作为自变量,影响因素 
  X = DataArray[:,0:8] 
  predict_value = reg.predict(X) 
  print(predict_value)

效果如下:

Python制作数据预测集成工具(值得收藏)

由于读取文件进行预测的话,数据较多故直接存储在TXT中方便查看

Python制作数据预测集成工具(值得收藏)

以上就是Python制作数据预测集成工具(值得收藏)的详细内容,更多关于python 数据预测的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
用pywin32实现windows模拟鼠标及键盘动作
Apr 22 Python
Python ORM框架SQLAlchemy学习笔记之安装和简单查询实例
Jun 10 Python
Python实现可获取网易页面所有文本信息的网易网络爬虫功能示例
Jan 15 Python
python 实现对文件夹内的文件排序编号
Apr 12 Python
python递归实现快速排序
Aug 18 Python
使用Python如何测试InnoDB与MyISAM的读写性能
Sep 18 Python
python中ImageTk.PhotoImage()不显示图片却不报错问题解决
Dec 06 Python
django框架模板语言使用方法详解
Jul 18 Python
分享一个pycharm专业版安装的永久使用方法
Sep 24 Python
wxPython色环电阻计算器
Nov 18 Python
使用python+whoosh实现全文检索
Dec 09 Python
在Pytorch中计算卷积方法的区别详解(conv2d的区别)
Jan 03 Python
简述 Python 的类和对象
Aug 21 #Python
DRF框架API版本管理实现方法解析
Aug 21 #Python
Django rest framework分页接口实现原理解析
Aug 21 #Python
Python -m参数原理及使用方法解析
Aug 21 #Python
python使用布隆过滤器的实现示例
Aug 20 #Python
QT5 Designer 打不开的问题及解决方法
Aug 20 #Python
Python配置pip国内镜像源的实现
Aug 20 #Python
You might like
PHP二维数组的去重问题解析
2011/07/17 PHP
php根据地址获取百度地图经纬度的实例方法
2019/09/03 PHP
Yii 框架入口脚本示例分析
2020/05/19 PHP
Extjs学习笔记之八 继承和事件基础
2010/01/08 Javascript
JavaScript学习笔记之获取当前目录的实现代码
2010/12/14 Javascript
JQuery插件Style定制化方法的分析与比较
2012/05/03 Javascript
JavaScript实现Java中Map容器的方法
2016/10/09 Javascript
BootStrapValidator初使用教程详解
2017/02/10 Javascript
Element Input组件分析小结
2018/10/11 Javascript
JS实现图片切换效果
2018/11/17 Javascript
使用pm2部署node生产环境的方法步骤
2019/03/09 Javascript
vue项目创建并引入饿了么elementUI组件的步骤
2019/04/11 Javascript
浅析vue中的provide / inject 有什么用处
2019/11/10 Javascript
Vue是怎么渲染template内的标签内容的
2020/06/05 Javascript
使用JS实现鼠标放上图片进行放大离开实现缩小功能
2021/01/27 Javascript
[01:09:10]NB vs Liquid Supermajor小组赛 A组胜者组决赛 BO3 第一场 6.2
2018/06/04 DOTA
Python中的random()方法的使用介绍
2015/05/15 Python
Windows下python2.7.8安装图文教程
2016/05/26 Python
python3利用venv配置虚拟环境及过程中的小问题小结
2018/08/01 Python
Python获取时间范围内日期列表和周列表的函数
2019/08/05 Python
详解Django CAS 解决方案
2019/10/30 Python
python opencv图片编码为h264文件的实例
2019/12/12 Python
Python获取、格式化当前时间日期的方法
2020/02/10 Python
Python判断字符串是否为合法标示符操作
2020/09/03 Python
在pycharm创建scrapy项目的实现步骤
2020/12/01 Python
如何写一个自定义标签
2012/12/28 面试题
信息技术培训感言
2014/03/06 职场文书
好学生评语大全
2014/05/05 职场文书
飞机制造技术专业求职信
2014/07/27 职场文书
2014年党务工作总结
2014/11/25 职场文书
同意落户证明
2015/06/19 职场文书
职业规划从高考志愿专业选择开始
2019/08/08 职场文书
vue使用wavesurfer.js解决音频可视化播放问题
2022/04/04 Vue.js
vue如何在data中引入图片的正确路径
2022/06/05 Vue.js
从原生JavaScript到React深入理解
2022/07/23 Javascript
使用Cargo工具高效创建Rust项目
2022/08/14 Javascript