Python抓新型冠状病毒肺炎疫情数据并绘制全国疫情分布的代码实例


Posted in Python onFebruary 05, 2020

运行结果(2020-2-4日数据)

Python抓新型冠状病毒肺炎疫情数据并绘制全国疫情分布的代码实例

Python抓新型冠状病毒肺炎疫情数据并绘制全国疫情分布的代码实例

数据来源

news.qq.com/zt2020/page/feiyan.htm

Python抓新型冠状病毒肺炎疫情数据并绘制全国疫情分布的代码实例

抓包分析

Python抓新型冠状病毒肺炎疫情数据并绘制全国疫情分布的代码实例

Python抓新型冠状病毒肺炎疫情数据并绘制全国疫情分布的代码实例

日报数据格式

"chinaDayList": [{
		"date": "01.13",
		"confirm": "41",
		"suspect": "0",
		"dead": "1",
		"heal": "0"
	}, {
		"date": "01.14",
		"confirm": "41",
		"suspect": "0",
		"dead": "1",
		"heal": "0"
	}, {
		"date": "01.15",
		"confirm": "41",
		"suspect": "0",
		"dead": "2",
		"heal": "5"
	}, {
	。。。。。。

全国各地疫情数据格式

"lastUpdateTime": "2020-02-04 12:43:19",
	"areaTree": [{
		"name": "中国",
		"children": [{
			"name": "湖北",
			"children": [{
				"name": "武汉",
				"total": {
					"confirm": 6384,
					"suspect": 0,
					"dead": 313,
					"heal": 303
				},
				"today": {
					"confirm": 1242,
					"suspect": 0,
					"dead": 48,
					"heal": 79
				}
			}, {
				"name": "黄冈",
				"total": {
					"confirm": 1422,
					"suspect": 0,
					"dead": 19,
					"heal": 36
				},
				"today": {
					"confirm": 176,
					"suspect": 0,
					"dead": 2,
					"heal": 9
				}
			}, {
			。。。。。。

地图数据

github.com/dongli/china-shapefiles

代码实现

#%%

import time, json, requests
from datetime import datetime
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from matplotlib.font_manager import FontProperties
from mpl_toolkits.basemap import Basemap
from matplotlib.patches import Polygon
import numpy as np
import jsonpath

plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号

#%%

# 全国疫情地区分布(省级确诊病例)
def catch_cn_disease_dis():
 timestamp = '%d'%int(time.time()*1000)
 url_area = ('https://view.inews.qq.com/g2/getOnsInfo?name=disease_h5'
    '&callback=&_=') + timestamp
 world_data = json.loads(requests.get(url=url_area).json()['data'])
 china_data = jsonpath.jsonpath(world_data, 
         expr='$.areaTree[0].children[*]')
 list_province = jsonpath.jsonpath(china_data, expr='$[*].name')
 list_province_confirm = jsonpath.jsonpath(china_data, expr='$[*].total.confirm')
 dic_province_confirm = dict(zip(list_province, list_province_confirm)) 
 return dic_province_confirm

area_data = catch_cn_disease_dis()
print(area_data)

#%%

# 抓取全国疫情按日期分布
'''
数据源:
"chinaDayList": [{
		"date": "01.13",
		"confirm": "41",
		"suspect": "0",
		"dead": "1",
		"heal": "0"
	}, {
		"date": "01.14",
		"confirm": "41",
		"suspect": "0",
		"dead": "1",
		"heal": "0"
	}
'''
def catch_cn_daily_dis():
 timestamp = '%d'%int(time.time()*1000)
 url_area = ('https://view.inews.qq.com/g2/getOnsInfo?name=disease_h5'
    '&callback=&_=') + timestamp
 world_data = json.loads(requests.get(url=url_area).json()['data'])
 china_daily_data = jsonpath.jsonpath(world_data, 
         expr='$.chinaDayList[*]')

 # 其实没必要单独用list存储,json可读性已经很好了;这里这样写仅是为了少该点老版本的代码  
 list_dates = list() # 日期
 list_confirms = list() # 确诊
 list_suspects = list() # 疑似
 list_deads = list() # 死亡
 list_heals = list() # 治愈  
 for item in china_daily_data:
  month, day = item['date'].split('.')
  list_dates.append(datetime.strptime('2020-%s-%s'%(month, day), '%Y-%m-%d'))
  list_confirms.append(int(item['confirm']))
  list_suspects.append(int(item['suspect']))
  list_deads.append(int(item['dead']))
  list_heals.append(int(item['heal']))  
 return list_dates, list_confirms, list_suspects, list_deads, list_heals  

list_date, list_confirm, list_suspect, list_dead, list_heal = catch_cn_daily_dis() 
print(list_date)
 

#%%

# 绘制每日确诊和死亡数据
def plot_cn_daily():
 # list_date, list_confirm, list_suspect, list_dead, list_heal = catch_cn_daily_dis() 
 
 plt.figure('novel coronavirus', facecolor='#f4f4f4', figsize=(10, 8))
 plt.title('全国新型冠状病毒疫情曲线', fontsize=20)
 print('日期元素数:', len(list_date), "\n确诊元素数:", len(list_confirm))
 plt.plot(list_date, list_confirm, label='确诊')
 plt.plot(list_date, list_suspect, label='疑似')
 plt.plot(list_date, list_dead, label='死亡')
 plt.plot(list_date, list_heal, label='治愈')
 xaxis = plt.gca().xaxis 
 # x轴刻度为1天
 xaxis.set_major_locator(matplotlib.dates.DayLocator(bymonthday=None, interval=1, tz=None))
 xaxis.set_major_formatter(mdates.DateFormatter('%m月%d日'))
 plt.gcf().autofmt_xdate() # 优化标注(自动倾斜)
 plt.grid(linestyle=':') # 显示网格
 plt.xlabel('日期',fontsize=16)
 plt.ylabel('人数',fontsize=16)
 plt.legend(loc='best')
 
plot_cn_daily()

#%%

# 绘制全国省级行政区域确诊分布图
count_iter = 0
def plot_cn_disease_dis():
 # area_data = catch_area_distribution()
 font = FontProperties(fname='res/coure.fon', size=14)
 
 # 经纬度范围
 lat_min = 10 # 纬度
 lat_max = 60
 lon_min = 70 # 经度
 lon_max = 140
  
 # 标签颜色和文本 
 legend_handles = [
    matplotlib.patches.Patch(color='#7FFFAA', alpha=1, linewidth=0),
    matplotlib.patches.Patch(color='#ffaa85', alpha=1, linewidth=0),
    matplotlib.patches.Patch(color='#ff7b69', alpha=1, linewidth=0),
    matplotlib.patches.Patch(color='#bf2121', alpha=1, linewidth=0),
    matplotlib.patches.Patch(color='#7f1818', alpha=1, linewidth=0),
 ]
 legend_labels = ['0人', '1-10人', '11-100人', '101-1000人', '>1000人']

 fig = plt.figure(facecolor='#f4f4f4', figsize=(10, 8)) 
 # 新建区域
 axes = fig.add_axes((0.1, 0.1, 0.8, 0.8)) # left, bottom, width, height, figure的百分比,从figure 10%的位置开始绘制, 宽高是figure的80%
 axes.set_title('全国新型冠状病毒疫情地图(确诊)', fontsize=20) # fontproperties=font 设置失败 
 # bbox_to_anchor(num1, num2), num1用于控制legend的左右移动,值越大越向右边移动,num2用于控制legend的上下移动,值越大,越向上移动。
 axes.legend(legend_handles, legend_labels, bbox_to_anchor=(0.5, -0.11), loc='lower center', ncol=5) # prop=font
 
 china_map = Basemap(llcrnrlon=lon_min, urcrnrlon=lon_max, llcrnrlat=lat_min, urcrnrlat=lat_max, resolution='l', ax=axes)
 # labels=[True,False,False,False] 分别代表 [left,right,top,bottom]
 china_map.drawparallels(np.arange(lat_min,lat_max,10), labels=[1,0,0,0]) # 画经度线
 china_map.drawmeridians(np.arange(lon_min,lon_max,10), labels=[0,0,0,1]) # 画纬度线
 china_map.drawcoastlines(color='black') # 洲际线
 china_map.drawcountries(color='red') # 国界线
 china_map.drawmapboundary(fill_color = 'aqua')
 # 画中国国内省界和九段线
 china_map.readshapefile('res/china-shapefiles-master/china', 'province', drawbounds=True)
 china_map.readshapefile('res/china-shapefiles-master/china_nine_dotted_line', 'section', drawbounds=True)
 
 global count_iter
 count_iter = 0
 
 # 内外循环不能对调,地图中每个省的数据有多条(绘制每一个shape,可以去查一下第一条“台湾省”的数据)
 for info, shape in zip(china_map.province_info, china_map.province):
  pname = info['OWNER'].strip('\x00')
  fcname = info['FCNAME'].strip('\x00')
  if pname != fcname: # 不绘制海岛
   continue
  is_reported = False # 西藏没有疫情,数据源就不取不到其数据 
  for prov_name in area_data.keys():    
   count_iter += 1
   if prov_name in pname:
    is_reported = True
    if area_data[prov_name] == 0:
     color = '#f0f0f0'
    elif area_data[prov_name] <= 10:
     color = '#ffaa85'
    elif area_data[prov_name] <= 100:
     color = '#ff7b69'
    elif area_data[prov_name] <= 1000:
     color = '#bf2121'
    else:
     color = '#7f1818'
    break
   
  if not is_reported:
   color = '#7FFFAA'
   
  poly = Polygon(shape, facecolor=color, edgecolor=color)
  axes.add_patch(poly)
  

plot_cn_disease_dis()
print('迭代次数', count_iter)

以上就是三水点靠木小编整理的全部知识点内容,感谢大家的学习和对三水点靠木的支持。

Python 相关文章推荐
python求解水仙花数的方法
May 11 Python
基于python中pygame模块的Linux下安装过程(详解)
Nov 09 Python
Django 忘记管理员或忘记管理员密码 重设登录密码的方法
May 30 Python
python 与服务器的共享文件夹交互方法
Dec 27 Python
Python编程深度学习计算库之numpy
Dec 28 Python
PyQt5下拉式复选框QComboCheckBox的实例
Jun 25 Python
pandas实现excel中的数据透视表和Vlookup函数功能代码
Feb 14 Python
Python GUI编程学习笔记之tkinter中messagebox、filedialog控件用法详解
Mar 30 Python
在Keras中利用np.random.shuffle()打乱数据集实例
Jun 15 Python
python中数字是否为可变类型
Jul 08 Python
Django ModelForm组件原理及用法详解
Oct 12 Python
Python实现老照片修复之上色小技巧
Oct 16 Python
Python实现新型冠状病毒传播模型及预测代码实例
Feb 05 #Python
基于Tensorflow批量数据的输入实现方式
Feb 05 #Python
Python操作注册表详细步骤介绍
Feb 05 #Python
Python类继承和多态原理解析
Feb 05 #Python
Python模块 _winreg操作注册表
Feb 05 #Python
python3操作注册表的方法(Url protocol)
Feb 05 #Python
Python tkinter模版代码实例
Feb 05 #Python
You might like
php程序之die调试法 快速解决错误
2009/09/17 PHP
Codeigniter生成Excel文档的简单方法
2014/06/12 PHP
PHP合并discuz用户脚本的方法
2015/08/04 PHP
php gethostbyname获取域名ip地址函数详解
2010/01/24 Javascript
Cookie 小记
2010/04/01 Javascript
Js 随机数产生6位数字
2010/05/13 Javascript
js 创建快捷方式的代码(fso)
2010/11/19 Javascript
JS通过相同的name进行表格求和代码
2013/08/18 Javascript
c#+jquery实现获取radio和checkbox的值
2020/09/12 Javascript
JavaScript中实现依赖注入的思路分享
2015/01/15 Javascript
jQuery Validate表单验证插件 添加class属性形式的校验
2016/01/18 Javascript
jQuery form插件之formDdata参数校验表单及验证后提交
2016/01/23 Javascript
浅谈Javascript数组(推荐)
2016/05/17 Javascript
Node.js中防止错误导致的进程阻塞的方法
2016/08/11 Javascript
5种JavaScript脚本加载的方式
2017/01/16 Javascript
jquery uploadify隐藏上传进度的实现方法
2017/02/06 Javascript
BootStrapValidator初使用教程详解
2017/02/10 Javascript
JS优化与惰性载入函数实例分析
2017/04/06 Javascript
Bootstrap Table 搜索框和查询功能
2017/11/30 Javascript
vue中设置、获取、删除cookie的方法
2018/09/21 Javascript
JavaScript this指向相关原理及实例解析
2020/07/10 Javascript
VSCode插件安装完成后的配置(常用配置)
2020/08/24 Javascript
[01:20]2018DOTA2亚洲邀请赛总决赛战队LGD晋级之路
2018/04/07 DOTA
Python实现读写sqlite3数据库并将统计数据写入Excel的方法示例
2017/08/07 Python
批量将ppt转换为pdf的Python代码 只要27行!
2018/02/26 Python
python机器学习库scikit-learn:SVR的基本应用
2019/06/26 Python
详细介绍Python进度条tqdm的使用
2019/07/31 Python
关于python导入模块import与常见的模块详解
2019/08/28 Python
Wilson体育用品官网:美国著名运动器材品牌
2019/05/12 全球购物
如果重写了对象的equals()方法,需要考虑什么
2014/11/02 面试题
会计专业的自荐信
2013/12/12 职场文书
酒店中秋节促销方案
2014/01/30 职场文书
金融管理毕业生求职信
2014/03/03 职场文书
2014年节能工作总结
2014/12/18 职场文书
2015年圣诞节活动总结
2015/03/24 职场文书
使用tensorflow 实现反向传播求导
2021/05/26 Python