Python抓新型冠状病毒肺炎疫情数据并绘制全国疫情分布的代码实例


Posted in Python onFebruary 05, 2020

运行结果(2020-2-4日数据)

Python抓新型冠状病毒肺炎疫情数据并绘制全国疫情分布的代码实例

Python抓新型冠状病毒肺炎疫情数据并绘制全国疫情分布的代码实例

数据来源

news.qq.com/zt2020/page/feiyan.htm

Python抓新型冠状病毒肺炎疫情数据并绘制全国疫情分布的代码实例

抓包分析

Python抓新型冠状病毒肺炎疫情数据并绘制全国疫情分布的代码实例

Python抓新型冠状病毒肺炎疫情数据并绘制全国疫情分布的代码实例

日报数据格式

"chinaDayList": [{
		"date": "01.13",
		"confirm": "41",
		"suspect": "0",
		"dead": "1",
		"heal": "0"
	}, {
		"date": "01.14",
		"confirm": "41",
		"suspect": "0",
		"dead": "1",
		"heal": "0"
	}, {
		"date": "01.15",
		"confirm": "41",
		"suspect": "0",
		"dead": "2",
		"heal": "5"
	}, {
	。。。。。。

全国各地疫情数据格式

"lastUpdateTime": "2020-02-04 12:43:19",
	"areaTree": [{
		"name": "中国",
		"children": [{
			"name": "湖北",
			"children": [{
				"name": "武汉",
				"total": {
					"confirm": 6384,
					"suspect": 0,
					"dead": 313,
					"heal": 303
				},
				"today": {
					"confirm": 1242,
					"suspect": 0,
					"dead": 48,
					"heal": 79
				}
			}, {
				"name": "黄冈",
				"total": {
					"confirm": 1422,
					"suspect": 0,
					"dead": 19,
					"heal": 36
				},
				"today": {
					"confirm": 176,
					"suspect": 0,
					"dead": 2,
					"heal": 9
				}
			}, {
			。。。。。。

地图数据

github.com/dongli/china-shapefiles

代码实现

#%%

import time, json, requests
from datetime import datetime
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from matplotlib.font_manager import FontProperties
from mpl_toolkits.basemap import Basemap
from matplotlib.patches import Polygon
import numpy as np
import jsonpath

plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号

#%%

# 全国疫情地区分布(省级确诊病例)
def catch_cn_disease_dis():
 timestamp = '%d'%int(time.time()*1000)
 url_area = ('https://view.inews.qq.com/g2/getOnsInfo?name=disease_h5'
    '&callback=&_=') + timestamp
 world_data = json.loads(requests.get(url=url_area).json()['data'])
 china_data = jsonpath.jsonpath(world_data, 
         expr='$.areaTree[0].children[*]')
 list_province = jsonpath.jsonpath(china_data, expr='$[*].name')
 list_province_confirm = jsonpath.jsonpath(china_data, expr='$[*].total.confirm')
 dic_province_confirm = dict(zip(list_province, list_province_confirm)) 
 return dic_province_confirm

area_data = catch_cn_disease_dis()
print(area_data)

#%%

# 抓取全国疫情按日期分布
'''
数据源:
"chinaDayList": [{
		"date": "01.13",
		"confirm": "41",
		"suspect": "0",
		"dead": "1",
		"heal": "0"
	}, {
		"date": "01.14",
		"confirm": "41",
		"suspect": "0",
		"dead": "1",
		"heal": "0"
	}
'''
def catch_cn_daily_dis():
 timestamp = '%d'%int(time.time()*1000)
 url_area = ('https://view.inews.qq.com/g2/getOnsInfo?name=disease_h5'
    '&callback=&_=') + timestamp
 world_data = json.loads(requests.get(url=url_area).json()['data'])
 china_daily_data = jsonpath.jsonpath(world_data, 
         expr='$.chinaDayList[*]')

 # 其实没必要单独用list存储,json可读性已经很好了;这里这样写仅是为了少该点老版本的代码  
 list_dates = list() # 日期
 list_confirms = list() # 确诊
 list_suspects = list() # 疑似
 list_deads = list() # 死亡
 list_heals = list() # 治愈  
 for item in china_daily_data:
  month, day = item['date'].split('.')
  list_dates.append(datetime.strptime('2020-%s-%s'%(month, day), '%Y-%m-%d'))
  list_confirms.append(int(item['confirm']))
  list_suspects.append(int(item['suspect']))
  list_deads.append(int(item['dead']))
  list_heals.append(int(item['heal']))  
 return list_dates, list_confirms, list_suspects, list_deads, list_heals  

list_date, list_confirm, list_suspect, list_dead, list_heal = catch_cn_daily_dis() 
print(list_date)
 

#%%

# 绘制每日确诊和死亡数据
def plot_cn_daily():
 # list_date, list_confirm, list_suspect, list_dead, list_heal = catch_cn_daily_dis() 
 
 plt.figure('novel coronavirus', facecolor='#f4f4f4', figsize=(10, 8))
 plt.title('全国新型冠状病毒疫情曲线', fontsize=20)
 print('日期元素数:', len(list_date), "\n确诊元素数:", len(list_confirm))
 plt.plot(list_date, list_confirm, label='确诊')
 plt.plot(list_date, list_suspect, label='疑似')
 plt.plot(list_date, list_dead, label='死亡')
 plt.plot(list_date, list_heal, label='治愈')
 xaxis = plt.gca().xaxis 
 # x轴刻度为1天
 xaxis.set_major_locator(matplotlib.dates.DayLocator(bymonthday=None, interval=1, tz=None))
 xaxis.set_major_formatter(mdates.DateFormatter('%m月%d日'))
 plt.gcf().autofmt_xdate() # 优化标注(自动倾斜)
 plt.grid(linestyle=':') # 显示网格
 plt.xlabel('日期',fontsize=16)
 plt.ylabel('人数',fontsize=16)
 plt.legend(loc='best')
 
plot_cn_daily()

#%%

# 绘制全国省级行政区域确诊分布图
count_iter = 0
def plot_cn_disease_dis():
 # area_data = catch_area_distribution()
 font = FontProperties(fname='res/coure.fon', size=14)
 
 # 经纬度范围
 lat_min = 10 # 纬度
 lat_max = 60
 lon_min = 70 # 经度
 lon_max = 140
  
 # 标签颜色和文本 
 legend_handles = [
    matplotlib.patches.Patch(color='#7FFFAA', alpha=1, linewidth=0),
    matplotlib.patches.Patch(color='#ffaa85', alpha=1, linewidth=0),
    matplotlib.patches.Patch(color='#ff7b69', alpha=1, linewidth=0),
    matplotlib.patches.Patch(color='#bf2121', alpha=1, linewidth=0),
    matplotlib.patches.Patch(color='#7f1818', alpha=1, linewidth=0),
 ]
 legend_labels = ['0人', '1-10人', '11-100人', '101-1000人', '>1000人']

 fig = plt.figure(facecolor='#f4f4f4', figsize=(10, 8)) 
 # 新建区域
 axes = fig.add_axes((0.1, 0.1, 0.8, 0.8)) # left, bottom, width, height, figure的百分比,从figure 10%的位置开始绘制, 宽高是figure的80%
 axes.set_title('全国新型冠状病毒疫情地图(确诊)', fontsize=20) # fontproperties=font 设置失败 
 # bbox_to_anchor(num1, num2), num1用于控制legend的左右移动,值越大越向右边移动,num2用于控制legend的上下移动,值越大,越向上移动。
 axes.legend(legend_handles, legend_labels, bbox_to_anchor=(0.5, -0.11), loc='lower center', ncol=5) # prop=font
 
 china_map = Basemap(llcrnrlon=lon_min, urcrnrlon=lon_max, llcrnrlat=lat_min, urcrnrlat=lat_max, resolution='l', ax=axes)
 # labels=[True,False,False,False] 分别代表 [left,right,top,bottom]
 china_map.drawparallels(np.arange(lat_min,lat_max,10), labels=[1,0,0,0]) # 画经度线
 china_map.drawmeridians(np.arange(lon_min,lon_max,10), labels=[0,0,0,1]) # 画纬度线
 china_map.drawcoastlines(color='black') # 洲际线
 china_map.drawcountries(color='red') # 国界线
 china_map.drawmapboundary(fill_color = 'aqua')
 # 画中国国内省界和九段线
 china_map.readshapefile('res/china-shapefiles-master/china', 'province', drawbounds=True)
 china_map.readshapefile('res/china-shapefiles-master/china_nine_dotted_line', 'section', drawbounds=True)
 
 global count_iter
 count_iter = 0
 
 # 内外循环不能对调,地图中每个省的数据有多条(绘制每一个shape,可以去查一下第一条“台湾省”的数据)
 for info, shape in zip(china_map.province_info, china_map.province):
  pname = info['OWNER'].strip('\x00')
  fcname = info['FCNAME'].strip('\x00')
  if pname != fcname: # 不绘制海岛
   continue
  is_reported = False # 西藏没有疫情,数据源就不取不到其数据 
  for prov_name in area_data.keys():    
   count_iter += 1
   if prov_name in pname:
    is_reported = True
    if area_data[prov_name] == 0:
     color = '#f0f0f0'
    elif area_data[prov_name] <= 10:
     color = '#ffaa85'
    elif area_data[prov_name] <= 100:
     color = '#ff7b69'
    elif area_data[prov_name] <= 1000:
     color = '#bf2121'
    else:
     color = '#7f1818'
    break
   
  if not is_reported:
   color = '#7FFFAA'
   
  poly = Polygon(shape, facecolor=color, edgecolor=color)
  axes.add_patch(poly)
  

plot_cn_disease_dis()
print('迭代次数', count_iter)

以上就是三水点靠木小编整理的全部知识点内容,感谢大家的学习和对三水点靠木的支持。

Python 相关文章推荐
Python将多个excel文件合并为一个文件
Jan 03 Python
基于DataFrame筛选数据与loc的用法详解
May 18 Python
Python Tkinter模块实现时钟功能应用示例
Jul 23 Python
Python HTML解析模块HTMLParser用法分析【爬虫工具】
Apr 05 Python
基于Python打造账号共享浏览器功能
May 30 Python
使用Python在Windows下获取USB PID&amp;VID的方法
Jul 02 Python
基于python全局设置id 自动化测试元素定位过程解析
Sep 04 Python
Pytorch中膨胀卷积的用法详解
Jan 07 Python
tensorflow入门:TFRecordDataset变长数据的batch读取详解
Jan 20 Python
Python3 中sorted() 函数的用法
Mar 24 Python
python 6.7 编写printTable()函数表格打印(完整代码)
Mar 25 Python
python初步实现word2vec操作
Jun 09 Python
Python实现新型冠状病毒传播模型及预测代码实例
Feb 05 #Python
基于Tensorflow批量数据的输入实现方式
Feb 05 #Python
Python操作注册表详细步骤介绍
Feb 05 #Python
Python类继承和多态原理解析
Feb 05 #Python
Python模块 _winreg操作注册表
Feb 05 #Python
python3操作注册表的方法(Url protocol)
Feb 05 #Python
Python tkinter模版代码实例
Feb 05 #Python
You might like
人尽可用的Windows技巧小贴士之下篇
2007/03/22 PHP
在MongoDB中模拟Auto Increment的php代码
2011/03/06 PHP
php算法实例分享
2015/07/14 PHP
Joomla开启SEF的方法
2016/05/04 PHP
图文详解PHP环境搭建教程
2016/07/16 PHP
实例讲解YII2中多表关联的使用方法
2017/07/21 PHP
PHP 命名空间和自动加载原理与用法实例分析
2020/04/29 PHP
jquery.jstree 增加节点的双击事件代码
2010/07/27 Javascript
编写自己的jQuery插件简单实现代码
2011/04/19 Javascript
javascript中的startWith和endWith的几种实现方法
2013/05/07 Javascript
Extjs4 类的定义和扩展实例
2013/06/28 Javascript
Jquery遍历节点的方法小集
2014/01/22 Javascript
js获取和设置属性的方法
2014/02/20 Javascript
jQuery实现向下滑出的二级菜单效果实例
2015/08/22 Javascript
javascript跨域总结之window.name实现的跨域数据传输
2015/11/01 Javascript
AngularJs实现ng1.3+表单验证
2015/12/10 Javascript
使用Node.js处理前端代码文件的编码问题
2016/02/16 Javascript
BootStrap文件上传样式超好看【持续更新】
2016/05/10 Javascript
利用JavaScript对中文(汉字)进行排序实例详解
2017/06/18 Javascript
微信小程序 蓝牙的实现实例代码
2017/06/27 Javascript
Nodejs中crypto模块的安全知识讲解
2018/01/03 NodeJs
原生JS实现的简单轮播图功能【适合新手】
2018/08/17 Javascript
vue中promise的使用及异步请求数据的方法
2018/11/08 Javascript
小程序实现抽奖动画
2020/04/16 Javascript
es6 filter() 数组过滤方法总结
2019/04/03 Javascript
Python数据类型学习笔记
2016/01/13 Python
python3实现名片管理系统
2020/11/29 Python
用python脚本24小时刷浏览器的访问量方法
2018/12/07 Python
django框架面向对象ORM模型继承用法实例分析
2019/07/29 Python
Python解析多帧dicom数据详解
2020/01/13 Python
Pycharm远程连接服务器并实现代码同步上传更新功能
2020/02/25 Python
python代码实现图书管理系统
2020/11/30 Python
医学实习生自我鉴定
2013/12/12 职场文书
go:垃圾回收GC触发条件详解
2021/04/24 Golang
django中websocket的具体使用
2022/01/22 Python
vue实现可以快进后退的跑马灯组件
2022/04/08 Vue.js