利用Tensorflow构建和训练自己的CNN来做简单的验证码识别方式


Posted in Python onJanuary 20, 2020

Tensorflow是目前最流行的深度学习框架,我们可以用它来搭建自己的卷积神经网络并训练自己的分类器,本文介绍怎样使用Tensorflow构建自己的CNN,怎样训练用于简单的验证码识别的分类器。本文假设你已经安装好了Tensorflow,了解过CNN的一些知识。

下面将分步介绍怎样获得训练数据,怎样使用tensorflow构建卷积神经网络,怎样训练,以及怎样测试训练出来的分类器

1. 准备训练样本

使用Python的库captcha来生成我们需要的训练样本,代码如下:

import sys 

import os 
import shutil 
import random 
import time 
#captcha是用于生成验证码图片的库,可以 pip install captcha 来安装它 
from captcha.image import ImageCaptcha 
 
#用于生成验证码的字符集 
CHAR_SET = ['0','1','2','3','4','5','6','7','8','9'] 
#字符集的长度 
CHAR_SET_LEN = 10 
#验证码的长度,每个验证码由4个数字组成 
CAPTCHA_LEN = 4 
 
#验证码图片的存放路径 
CAPTCHA_IMAGE_PATH = 'E:/Tensorflow/captcha/images/' 
#用于模型测试的验证码图片的存放路径,它里面的验证码图片作为测试集 
TEST_IMAGE_PATH = 'E:/Tensorflow/captcha/test/' 
#用于模型测试的验证码图片的个数,从生成的验证码图片中取出来放入测试集中 
TEST_IMAGE_NUMBER = 50 
 
#生成验证码图片,4位的十进制数字可以有10000种验证码 
def generate_captcha_image(charSet = CHAR_SET, charSetLen=CHAR_SET_LEN, captchaImgPath=CAPTCHA_IMAGE_PATH):   
  k = 0 
  total = 1 
  for i in range(CAPTCHA_LEN): 
    total *= charSetLen 
     
  for i in range(charSetLen): 
    for j in range(charSetLen): 
      for m in range(charSetLen): 
        for n in range(charSetLen): 
          captcha_text = charSet[i] + charSet[j] + charSet[m] + charSet[n] 
          image = ImageCaptcha() 
          image.write(captcha_text, captchaImgPath + captcha_text + '.jpg') 
          k += 1 
          sys.stdout.write("\rCreating %d/%d" % (k, total)) 
          sys.stdout.flush() 
           
#从验证码的图片集中取出一部分作为测试集,这些图片不参加训练,只用于模型的测试           
def prepare_test_set(): 
  fileNameList = []   
  for filePath in os.listdir(CAPTCHA_IMAGE_PATH): 
    captcha_name = filePath.split('/')[-1] 
    fileNameList.append(captcha_name) 
  random.seed(time.time()) 
  random.shuffle(fileNameList)  
  for i in range(TEST_IMAGE_NUMBER): 
    name = fileNameList[i] 
    shutil.move(CAPTCHA_IMAGE_PATH + name, TEST_IMAGE_PATH + name) 
             
if __name__ == '__main__': 
  generate_captcha_image(CHAR_SET, CHAR_SET_LEN, CAPTCHA_IMAGE_PATH) 
  prepare_test_set() 
  sys.stdout.write("\nFinished") 
  sys.stdout.flush()

运行上面的代码,可以生成验证码图片,

生成的验证码图片如下图所示:

利用Tensorflow构建和训练自己的CNN来做简单的验证码识别方式

利用Tensorflow构建和训练自己的CNN来做简单的验证码识别方式

2. 构建CNN,训练分类器

代码如下:

import tensorflow as tf 
import numpy as np 
from PIL import Image 
import os 
import random 
import time 
 
#验证码图片的存放路径 
CAPTCHA_IMAGE_PATH = 'E:/Tensorflow/captcha/images/' 
#验证码图片的宽度 
CAPTCHA_IMAGE_WIDHT = 160 
#验证码图片的高度 
CAPTCHA_IMAGE_HEIGHT = 60 
 
CHAR_SET_LEN = 10 
CAPTCHA_LEN = 4 
 
#60%的验证码图片放入训练集中 
TRAIN_IMAGE_PERCENT = 0.6 
#训练集,用于训练的验证码图片的文件名 
TRAINING_IMAGE_NAME = [] 
#验证集,用于模型验证的验证码图片的文件名 

VALIDATION_IMAGE_NAME = [] 

#存放训练好的模型的路径 
MODEL_SAVE_PATH = 'E:/Tensorflow/captcha/models/' 
 
def get_image_file_name(imgPath=CAPTCHA_IMAGE_PATH): 
  fileName = [] 
  total = 0 
  for filePath in os.listdir(imgPath): 
    captcha_name = filePath.split('/')[-1] 
    fileName.append(captcha_name) 
    total += 1 
  return fileName, total 
   
#将验证码转换为训练时用的标签向量,维数是 40   
#例如,如果验证码是 ‘0296' ,则对应的标签是 
# [1 0 0 0 0 0 0 0 0 0 
# 0 0 1 0 0 0 0 0 0 0 
# 0 0 0 0 0 0 0 0 0 1 
# 0 0 0 0 0 0 1 0 0 0] 
def name2label(name): 
  label = np.zeros(CAPTCHA_LEN * CHAR_SET_LEN) 
  for i, c in enumerate(name): 
    idx = i*CHAR_SET_LEN + ord(c) - ord('0') 
    label[idx] = 1 
  return label 
   
#取得验证码图片的数据以及它的标签     
def get_data_and_label(fileName, filePath=CAPTCHA_IMAGE_PATH): 
  pathName = os.path.join(filePath, fileName) 
  img = Image.open(pathName) 
  #转为灰度图 
  img = img.convert("L")     
  image_array = np.array(img)   
  image_data = image_array.flatten()/255 
  image_label = name2label(fileName[0:CAPTCHA_LEN]) 
  return image_data, image_label 
   
#生成一个训练batch   
def get_next_batch(batchSize=32, trainOrTest='train', step=0): 
  batch_data = np.zeros([batchSize, CAPTCHA_IMAGE_WIDHT*CAPTCHA_IMAGE_HEIGHT]) 
  batch_label = np.zeros([batchSize, CAPTCHA_LEN * CHAR_SET_LEN]) 
  fileNameList = TRAINING_IMAGE_NAME 
  if trainOrTest == 'validate':     
    fileNameList = VALIDATION_IMAGE_NAME 
     
  totalNumber = len(fileNameList)  
  indexStart = step*batchSize   
  for i in range(batchSize): 
    index = (i + indexStart) % totalNumber 
    name = fileNameList[index]     
    img_data, img_label = get_data_and_label(name) 
    batch_data[i, : ] = img_data 
    batch_label[i, : ] = img_label  
 
  return batch_data, batch_label 
   
#构建卷积神经网络并训练 
def train_data_with_CNN(): 
  #初始化权值 
  def weight_variable(shape, name='weight'): 
    init = tf.truncated_normal(shape, stddev=0.1) 
    var = tf.Variable(initial_value=init, name=name) 
    return var 
  #初始化偏置   
  def bias_variable(shape, name='bias'): 
    init = tf.constant(0.1, shape=shape) 
    var = tf.Variable(init, name=name) 
    return var 
  #卷积   
  def conv2d(x, W, name='conv2d'): 
    return tf.nn.conv2d(x, W, strides=[1,1,1,1], padding='SAME', name=name) 
  #池化  
  def max_pool_2X2(x, name='maxpool'): 
    return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME', name=name)    
   
  #输入层 
  #请注意 X 的 name,在测试model时会用到它 
  X = tf.placeholder(tf.float32, [None, CAPTCHA_IMAGE_WIDHT * CAPTCHA_IMAGE_HEIGHT], name='data-input') 
  Y = tf.placeholder(tf.float32, [None, CAPTCHA_LEN * CHAR_SET_LEN], name='label-input')   
  x_input = tf.reshape(X, [-1, CAPTCHA_IMAGE_HEIGHT, CAPTCHA_IMAGE_WIDHT, 1], name='x-input') 
  #dropout,防止过拟合 
  #请注意 keep_prob 的 name,在测试model时会用到它 
  keep_prob = tf.placeholder(tf.float32, name='keep-prob') 
  #第一层卷积 
  W_conv1 = weight_variable([5,5,1,32], 'W_conv1') 
  B_conv1 = bias_variable([32], 'B_conv1') 
  conv1 = tf.nn.relu(conv2d(x_input, W_conv1, 'conv1') + B_conv1) 
  conv1 = max_pool_2X2(conv1, 'conv1-pool') 
  conv1 = tf.nn.dropout(conv1, keep_prob) 
  #第二层卷积 
  W_conv2 = weight_variable([5,5,32,64], 'W_conv2') 
  B_conv2 = bias_variable([64], 'B_conv2') 
  conv2 = tf.nn.relu(conv2d(conv1, W_conv2,'conv2') + B_conv2) 
  conv2 = max_pool_2X2(conv2, 'conv2-pool') 
  conv2 = tf.nn.dropout(conv2, keep_prob) 
  #第三层卷积 
  W_conv3 = weight_variable([5,5,64,64], 'W_conv3') 
  B_conv3 = bias_variable([64], 'B_conv3') 
  conv3 = tf.nn.relu(conv2d(conv2, W_conv3, 'conv3') + B_conv3) 
  conv3 = max_pool_2X2(conv3, 'conv3-pool') 
  conv3 = tf.nn.dropout(conv3, keep_prob) 
  #全链接层 
  #每次池化后,图片的宽度和高度均缩小为原来的一半,进过上面的三次池化,宽度和高度均缩小8倍 
  W_fc1 = weight_variable([20*8*64, 1024], 'W_fc1') 
  B_fc1 = bias_variable([1024], 'B_fc1') 
  fc1 = tf.reshape(conv3, [-1, 20*8*64]) 
  fc1 = tf.nn.relu(tf.add(tf.matmul(fc1, W_fc1), B_fc1)) 
  fc1 = tf.nn.dropout(fc1, keep_prob) 
  #输出层 
  W_fc2 = weight_variable([1024, CAPTCHA_LEN * CHAR_SET_LEN], 'W_fc2') 
  B_fc2 = bias_variable([CAPTCHA_LEN * CHAR_SET_LEN], 'B_fc2') 
  output = tf.add(tf.matmul(fc1, W_fc2), B_fc2, 'output') 
   
  loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=Y, logits=output)) 
  optimizer = tf.train.AdamOptimizer(0.001).minimize(loss) 
   
  predict = tf.reshape(output, [-1, CAPTCHA_LEN, CHAR_SET_LEN], name='predict') 
  labels = tf.reshape(Y, [-1, CAPTCHA_LEN, CHAR_SET_LEN], name='labels') 
  #预测结果 
  #请注意 predict_max_idx 的 name,在测试model时会用到它 
  predict_max_idx = tf.argmax(predict, axis=2, name='predict_max_idx') 
  labels_max_idx = tf.argmax(labels, axis=2, name='labels_max_idx') 
  predict_correct_vec = tf.equal(predict_max_idx, labels_max_idx) 
  accuracy = tf.reduce_mean(tf.cast(predict_correct_vec, tf.float32)) 
   
  saver = tf.train.Saver() 
  with tf.Session() as sess: 
    sess.run(tf.global_variables_initializer()) 
    steps = 0 
    for epoch in range(6000): 
      train_data, train_label = get_next_batch(64, 'train', steps) 
      sess.run(optimizer, feed_dict={X : train_data, Y : train_label, keep_prob:0.75}) 
      if steps % 100 == 0: 
        test_data, test_label = get_next_batch(100, 'validate', steps) 
        acc = sess.run(accuracy, feed_dict={X : test_data, Y : test_label, keep_prob:1.0}) 
        print("steps=%d, accuracy=%f" % (steps, acc)) 
        if acc > 0.99: 
          saver.save(sess, MODEL_SAVE_PATH+"crack_captcha.model", global_step=steps) 
          break 
      steps += 1 
 
if __name__ == '__main__':   
  image_filename_list, total = get_image_file_name(CAPTCHA_IMAGE_PATH) 
  random.seed(time.time()) 
  #打乱顺序 
  random.shuffle(image_filename_list) 
  trainImageNumber = int(total * TRAIN_IMAGE_PERCENT) 
  #分成测试集 
  TRAINING_IMAGE_NAME = image_filename_list[ : trainImageNumber] 
  #和验证集 
  VALIDATION_IMAGE_NAME = image_filename_list[trainImageNumber : ] 
  train_data_with_CNN()   
  print('Training finished')

运行上面的代码,开始训练,训练要花些时间,如果没有GPU的话,会慢些,

训练完后,输出如下结果,经过4100次的迭代,训练出来的分类器模型在验证集上识别的准确率为99.5%

利用Tensorflow构建和训练自己的CNN来做简单的验证码识别方式

生成的模型文件如下,在模型测试时将用到这些文件

利用Tensorflow构建和训练自己的CNN来做简单的验证码识别方式

3. 测试模型

编写代码,对训练出来的模型进行测试

import tensorflow as tf 

import numpy as np 
from PIL import Image 
import os 
import matplotlib.pyplot as plt  
 
CAPTCHA_LEN = 4 
 
MODEL_SAVE_PATH = 'E:/Tensorflow/captcha/models/' 
TEST_IMAGE_PATH = 'E:/Tensorflow/captcha/test/' 
 
def get_image_data_and_name(fileName, filePath=TEST_IMAGE_PATH): 
  pathName = os.path.join(filePath, fileName) 
  img = Image.open(pathName) 
  #转为灰度图 
  img = img.convert("L")     
  image_array = np.array(img)   
  image_data = image_array.flatten()/255 
  image_name = fileName[0:CAPTCHA_LEN] 
  return image_data, image_name 
 
def digitalStr2Array(digitalStr): 
  digitalList = [] 
  for c in digitalStr: 
    digitalList.append(ord(c) - ord('0')) 
  return np.array(digitalList) 
 
def model_test(): 
  nameList = [] 
  for pathName in os.listdir(TEST_IMAGE_PATH): 
    nameList.append(pathName.split('/')[-1]) 
  totalNumber = len(nameList) 
  #加载graph 
  saver = tf.train.import_meta_graph(MODEL_SAVE_PATH+"crack_captcha.model-4100.meta") 
  graph = tf.get_default_graph() 
  #从graph取得 tensor,他们的name是在构建graph时定义的(查看上面第2步里的代码) 
  input_holder = graph.get_tensor_by_name("data-input:0") 
  keep_prob_holder = graph.get_tensor_by_name("keep-prob:0") 
  predict_max_idx = graph.get_tensor_by_name("predict_max_idx:0") 
  with tf.Session() as sess: 
    saver.restore(sess, tf.train.latest_checkpoint(MODEL_SAVE_PATH)) 
    count = 0 
    for fileName in nameList: 
      img_data, img_name = get_image_data_and_name(fileName, TEST_IMAGE_PATH) 
      predict = sess.run(predict_max_idx, feed_dict={input_holder:[img_data], keep_prob_holder : 1.0})       
      filePathName = TEST_IMAGE_PATH + fileName 
      print(filePathName) 
      img = Image.open(filePathName) 
      plt.imshow(img) 
      plt.axis('off') 
      plt.show() 
      predictValue = np.squeeze(predict) 
      rightValue = digitalStr2Array(img_name) 
      if np.array_equal(predictValue, rightValue): 
        result = '正确' 
        count += 1 
      else:  
        result = '错误'       
      print('实际值:{}, 预测值:{},测试结果:{}'.format(rightValue, predictValue, result)) 
      print('\n') 
       
    print('正确率:%.2f%%(%d/%d)' % (count*100/totalNumber, count, totalNumber)) 
 
if __name__ == '__main__': 
  model_test()

对模型的测试结果如下,在测试集上识别的准确率为 94%

利用Tensorflow构建和训练自己的CNN来做简单的验证码识别方式

下面是两个识别错误的验证码

利用Tensorflow构建和训练自己的CNN来做简单的验证码识别方式

以上这篇利用Tensorflow构建和训练自己的CNN来做简单的验证码识别方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python发送邮件的实例代码(支持html、图片、附件)
Mar 04 Python
Python探索之pLSA实现代码
Oct 25 Python
numpy找出array中的最大值,最小值实例
Apr 03 Python
Python实现针对给定字符串寻找最长非重复子串的方法
Apr 21 Python
Python爬虫框架Scrapy常用命令总结
Jul 26 Python
Python实现的特征提取操作示例
Dec 03 Python
Python基础教程之异常详解
Jan 10 Python
Python read函数按字节(字符)读取文件的实现
Jul 03 Python
解决python中用matplotlib画多幅图时出现图形部分重叠的问题
Jul 07 Python
HTML的form表单和django的form表单
Jul 25 Python
Python 使用元类type创建类对象常见应用详解
Oct 17 Python
python使用协程实现并发操作的方法详解
Dec 27 Python
新年福利来一波之Python轻松集齐五福(demo)
Jan 20 #Python
Python timer定时器两种常用方法解析
Jan 20 #Python
tensorflow 固定部分参数训练,只训练部分参数的实例
Jan 20 #Python
如何通过Django使用本地css/js文件
Jan 20 #Python
Python中 Global和Nonlocal的用法详解
Jan 20 #Python
Django后台管理系统的图文使用教学
Jan 20 #Python
解决Pycharm的项目目录突然消失的问题
Jan 20 #Python
You might like
php access 数据连接与读取保存编辑数据的实现代码
2010/05/12 PHP
php 判断访客是否为搜索引擎蜘蛛的函数代码
2011/07/29 PHP
PHP 时间日期操作实战
2011/08/26 PHP
php实现统计邮件大小的方法
2013/08/06 PHP
thinkphp实现数组分页示例
2014/04/13 PHP
ThinkPHP学习笔记(一)ThinkPHP部署
2014/06/22 PHP
jQuery 全选效果实现代码
2009/03/23 Javascript
jQuery数组处理代码详解(含实例演示)
2012/02/03 Javascript
JS TextArea字符串长度限制代码集合
2012/10/31 Javascript
Json字符串转换为JS对象的高效方法实例
2013/05/01 Javascript
判断某个字符在一个字符串中是否存在的js代码
2014/02/28 Javascript
JavaScript把数组作为堆栈使用的方法
2015/03/20 Javascript
Javascript验证Visa和MasterCard信用卡号的方法
2015/07/27 Javascript
JS拖动鼠标画出方框实现鼠标选区的方法
2015/08/05 Javascript
通过点击jqgrid表格弹出需要的表格数据
2015/12/02 Javascript
vue 使用eventBus实现同级组件的通讯
2018/03/02 Javascript
Vue中CSS动画原理的实现
2019/02/13 Javascript
使用pm2部署node生产环境的方法步骤
2019/03/09 Javascript
[01:08]DOTA2次级职业联赛 - Wings 战队宣传片
2014/12/01 DOTA
Python json模块使用实例
2015/04/11 Python
按日期打印Python的Tornado框架中的日志的方法
2015/05/02 Python
python操作字典类型的常用方法(推荐)
2016/05/16 Python
python3.4实现邮件发送功能
2018/05/28 Python
python实现猜数字小游戏
2020/03/24 Python
Python 一句话生成字母表的方法
2019/01/02 Python
Python txt文件加入字典并查询的方法
2019/01/15 Python
python能做哪些生活有趣的事情
2020/09/09 Python
pytorch 移动端部署之helloworld的使用
2020/10/30 Python
中文专业毕业生自荐信
2013/10/28 职场文书
财务经理的岗位职责
2013/12/17 职场文书
合同专员岗位职责
2013/12/18 职场文书
清明节扫墓活动方案
2014/03/02 职场文书
元旦寄语大全
2014/04/10 职场文书
考试作弊检讨书
2015/01/27 职场文书
2015年大学辅导员工作总结
2015/05/12 职场文书
Android基础入门之dataBinding的简单使用教程
2022/06/21 Java/Android