python numpy之np.random的随机数函数使用介绍


Posted in Python onOctober 06, 2019

np.random的随机数函数(1)

函数 说明
rand(d0,d1,..,dn) 根据d0?dn创建随机数数组,浮点数, [0,1),均匀分布
randn(d0,d1,..,dn) 根据d0?dn创建随机数数组,标准正态分布
randint(low[,high,shape]) 根据shape创建随机整数或整数数组,范围是[low, high)
seed(s) 随机数种子, s是给定的种子值

np.random.rand

import numpy as np

a = np.random.rand(3, 4, 5)

a
Out[3]: 
array([[[0.28576737, 0.96566496, 0.59411491, 0.47805199, 0.97454449],
    [0.15970049, 0.35184063, 0.66815684, 0.13571458, 0.41168113],
    [0.66737322, 0.91583297, 0.68033204, 0.49083857, 0.33549182],
    [0.52797439, 0.23526146, 0.39731129, 0.26576975, 0.26846021]],

    [[0.46860445, 0.84988491, 0.92614786, 0.76410349, 0.00283208],
    [0.88036955, 0.01402271, 0.59294569, 0.14080713, 0.72076521],
    [0.0537956 , 0.08118672, 0.59281986, 0.60544876, 0.77931621],
    [0.41678215, 0.24321042, 0.25167563, 0.94738625, 0.86642919]],

    [[0.36137271, 0.21672667, 0.85449629, 0.51065516, 0.16990425],
    [0.97507815, 0.78870518, 0.36101021, 0.56538782, 0.56392004],
    [0.93777677, 0.73199966, 0.97342172, 0.42147127, 0.73654324],
    [0.83139234, 0.00221262, 0.51822612, 0.60964223, 0.83029954]]])

np.random.randn

b = np.random.randn(3, 4, 5)

b
Out[5]: 
array([[[ 0.09170952, -0.36083675, -0.18189783, -0.52370155,
     -0.61183783],
    [ 1.05285606, -0.82944771, -0.93438396, 0.32229904,
     -0.85316565],
    [ 1.41103666, -0.32534111, -0.02202953, 1.02101228,
     1.59756695],
    [-0.33896372, 0.42234042, 0.14297587, -0.70335248,
     0.29436318]],

    [[ 0.73454216, 0.35412624, -1.76199508, 1.79502353,
     1.05694614],
    [-0.42403323, -0.36551581, 0.54033378, -0.04914723,
     1.15092556],
    [ 0.48814148, 1.09265266, 0.65504441, -1.04280834,
     0.70437122],
    [ 2.92946803, -1.73066859, -0.30184912, 1.04918753,
     -1.58460681]],

    [[ 1.24923498, -0.65467868, -1.30427044, 1.49415265,
     0.87520623],
    [-0.26425316, -0.89014489, 0.98409579, 1.13291179,
     -0.91343016],
    [-0.71570644, 0.81026219, -0.00906133, 0.90806035,
     -0.914998 ],
    [ 0.22115875, -0.81820313, 0.66359573, -0.1490853 ,
     0.75663096]]])

np.random.randint

c = np.random.randint(100, 200, (3, 4))

c
Out[9]: 
array([[104, 140, 161, 193],
    [134, 147, 126, 120],
    [117, 141, 162, 137]])

numpy.random.randint的详细用法 - python

函数的作用是,返回一个随机整型数,范围从低(包括)到高(不包括),即[low, high)。如果没有写参数high的值,则返回[0,low)的值。
numpy.random.randint(low, high=None, size=None, dtype='l')

参数如下:

参数 描述
low: int 生成的数值最低要大于等于low。 (hign = None时,生成的数值要在[0, low)区间内)
high: int (可选) 如果使用这个值,则生成的数值在[low, high)区间。
size: int or tuple of ints(可选) 输出随机数的尺寸,比如size=(m * n* k)则输出同规模即m * n* k个随机数。默认是None的,仅仅返回满足要求的单一随机数。
dtype: dtype(可选): 想要输出的格式。如int64、int等等

输出:

返回一个随机数或随机数数组

例子

>>> np.random.randint(2, size=10)
array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0])
>>> np.random.randint(1, size=10)
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

>>> np.random.randint(5, size=(2, 4))
array([[4, 0, 2, 1],
       [3, 2, 2, 0]])

>>>np.random.randint(2, high=10, size=(2,3))
array([[6, 8, 7],
       [2, 5, 2]])

np.random.seed
随机种子生成器,使下一次生成的随机数为由种子数决定的“特定”的随机数,如果seed中参数为空,则生成的随机数“完全”随机。参考和文档。

np.random.seed(10)

np.random.randint(100, 200, (3 ,4))
Out[11]: 
array([[109, 115, 164, 128],
    [189, 193, 129, 108],
    [173, 100, 140, 136]])

np.random.seed(10)

np.random.randint(100 ,200, (3, 4))
Out[13]: 
array([[109, 115, 164, 128],
    [189, 193, 129, 108],
    [173, 100, 140, 136]])

np.random的随机数函数(2)

函数 说明
shuffle(a) 根据数组a的第1轴(也就是最外层的维度)进行随排列,改变数组x
permutation(a) 根据数组a的第1轴产生一个新的乱序数组,不改变数组x
choice(a[,size,replace,p]) 从一维数组a中以概率p抽取元素,形成size形状新数组replace表示是否可以重用元素,默认为False

np.random.shuffle

a = np.random.randint(100, 200, (3, 4))

a
Out[15]: 
array([[116, 111, 154, 188],
    [162, 133, 172, 178],
    [149, 151, 154, 177]])

np.random.shuffle(a)

a
Out[17]: 
array([[116, 111, 154, 188],
    [149, 151, 154, 177],
    [162, 133, 172, 178]])

np.random.shuffle(a)

a
Out[19]: 
array([[162, 133, 172, 178],
    [116, 111, 154, 188],
    [149, 151, 154, 177]])

可以看到,a发生了变化,轴。

np.random.permutation

b = np.random.randint(100, 200, (3, 4))

b
Out[21]: 
array([[113, 192, 186, 130],
    [130, 189, 112, 165],
    [131, 157, 136, 127]])

np.random.permutation(b)
Out[22]: 
array([[113, 192, 186, 130],
    [130, 189, 112, 165],
    [131, 157, 136, 127]])

b
Out[24]: 
array([[113, 192, 186, 130],
    [130, 189, 112, 165],
    [131, 157, 136, 127]])

可以看到,b没有发生改变。

np.random.choice

c = np.random.randint(100, 200, (8,))

c
Out[26]: array([123, 194, 111, 128, 174, 188, 109, 115])

np.random.choice(c, (3, 2))
Out[27]: 
array([[111, 123],
    [109, 115],
    [123, 128]])#默认可以出现重复值

np.random.choice(c, (3, 2), replace=False)
Out[28]: 
array([[188, 111],
    [123, 115],
    [174, 128]])#不允许出现重复值

np.random.choice(c, (3, 2),p=c/np.sum(c))
Out[29]: 
array([[194, 188],
    [109, 111],
    [174, 109]])#指定每个值出现的概率

np.random的随机数函数(3)

函数 说明
uniform(low,high,size) 产生具有均匀分布的数组,low起始值,high结束值,size形状
normal(loc,scale,size) 产生具有正态分布的数组,loc均值,scale标准差,size形状
poisson(lam,size) 产生具有泊松分布的数组,lam随机事件发生率,size形状
u = np.random.uniform(0, 10, (3, 4))

u
Out[31]: 
array([[9.83020867, 4.67403279, 8.75744495, 2.96068699],
    [1.31291053, 8.42817933, 6.59036304, 5.95439605],
    [4.36353698, 3.56250327, 5.87130925, 1.49471337]])

n = np.random.normal(10, 5, (3, 4))

n
Out[33]: 
array([[ 8.17771928, 4.17423265, 3.28465058, 17.2669643 ],
    [10.00584724, 9.94039808, 13.57941572, 4.07115727],
    [ 6.81836048, 6.94593078, 3.40304302, 7.19135792]])

p = np.random.poisson(2.0, (3, 4))

p
Out[35]: 
array([[0, 2, 2, 1],
    [2, 0, 1, 3],
    [4, 2, 0, 3]])

数据分析师分析问题第一步,必须明确这是不是一个问题!!!

Python 相关文章推荐
零基础写python爬虫之爬虫框架Scrapy安装配置
Nov 06 Python
Python实现提取谷歌音乐搜索结果的方法
Jul 10 Python
python杀死一个线程的方法
Sep 06 Python
python 读写、创建 文件的方法(必看)
Sep 12 Python
在python中利用GDAL对tif文件进行读写的方法
Nov 29 Python
使用python制作游戏下载进度条的代码(程序说明见注释)
Oct 24 Python
使用OpenCV获取图像某点的颜色值,并设置某点的颜色
Jun 02 Python
如何使用Python调整图像大小
Sep 26 Python
详解如何修改python中字典的键和值
Sep 29 Python
python中yield的用法详解
Jan 13 Python
Django展示可视化图表的多种方式
Apr 08 Python
用Python进行栅格数据的分区统计和批量提取
May 27 Python
python系列 文件操作的代码
Oct 06 #Python
pip 安装库比较慢的解决方法(国内镜像)
Oct 06 #Python
Anaconda之conda常用命令介绍(安装、更新、删除)
Oct 06 #Python
Python pip 安装与使用(安装、更新、删除)
Oct 06 #Python
python 3.74 运行import numpy as np 报错lib\site-packages\numpy\__init__.py
Oct 06 #Python
windows下Python安装、使用教程和Notepad++的使用教程
Oct 06 #Python
Django学习之文件上传与下载
Oct 06 #Python
You might like
利用php+mysql来做一个功能强大的在线计算器
2010/10/12 PHP
php统计时间和内存使用情况示例分享
2014/03/13 PHP
菜单效果
2006/10/14 Javascript
用javascript getComputedStyle获取和设置style的原理
2008/10/10 Javascript
location.search在客户端获取Url参数的方法
2010/06/08 Javascript
Document.location.href和.replace的区别示例介绍
2014/03/04 Javascript
JavaScript sup方法入门实例(把字符串显示为上标)
2014/10/20 Javascript
JS拖动鼠标画出方框实现鼠标选区的方法
2015/08/05 Javascript
jQuery实现指定内容滚动同时左侧或其它地方不滚动的方法
2015/08/08 Javascript
jquery插件方式实现table查询功能的简单实例
2016/06/06 Javascript
用JS实现图片轮播效果代码(一)
2016/06/26 Javascript
完美实现八种js焦点轮播图(上篇)
2016/07/18 Javascript
javaScript事件机制兼容【详细整理】
2016/07/23 Javascript
jquery 仿锚点跳转到页面指定位置的实例
2017/02/14 Javascript
mpvue小程序仿qq左滑置顶删除组件
2018/08/03 Javascript
React Component存在的几种形式详解
2018/11/06 Javascript
微信小程序swiper实现文字纵向轮播提示效果
2020/01/21 Javascript
js+for循环实现字符串自动转义的代码(把后面的字符替换前面的字符)
2020/12/24 Javascript
用Python制作在地图上模拟瘟疫扩散的Gif图
2015/03/31 Python
Python中的异常处理简明介绍
2015/04/13 Python
python实现多线程抓取知乎用户
2016/12/12 Python
Python基于正则表达式实现文件内容替换的方法
2017/08/30 Python
python实现单向链表详解
2018/02/08 Python
Pandas时间序列重采样(resample)方法中closed、label的作用详解
2019/12/10 Python
python分别打包出32位和64位应用程序
2020/02/18 Python
pyx文件 生成pyd 文件用于 cython调用的实现
2021/03/04 Python
html5 Canvas画图教程(3)—canvas出现1像素线条模糊不清的原因
2013/01/09 HTML / CSS
eDreams意大利:南欧领先的在线旅行社
2018/11/23 全球购物
李维斯牛仔裤荷兰官方网站:Levi’s NL
2020/08/23 全球购物
计算机网络毕业生自荐信
2013/10/01 职场文书
外企求职信范文分享
2013/12/31 职场文书
工作违纪检讨书
2014/02/17 职场文书
保密工作承诺书
2014/08/29 职场文书
夫妻双方自愿离婚协议书怎么写
2014/12/01 职场文书
委托书英文
2015/01/28 职场文书
2016领导干部廉洁自律心得体会
2016/01/13 职场文书