python Pandas库基础分析之时间序列的处理详解


Posted in Python onJuly 13, 2019

前言

在使用Python进行数据分析时,经常会遇到时间日期格式处理和转换,特别是分析和挖掘与时间相关的数据,比如量化交易就是从历史数据中寻找股价的变化规律。Python中自带的处理时间的模块有datetime,NumPy库也提供了相应的方法,Pandas作为Python环境下的数据分析库,更是提供了强大的日期数据处理的功能,是处理时间序列的利器。

1、生成日期序列

主要提供pd.data_range()和pd.period_range()两个方法,给定参数有起始时间、结束时间、生成时期的数目及时间频率(freq='M'月,'D'天,‘W',周,'Y'年)等。

两种主要区别在于pd.date_range()生成的是DatetimeIndex格式的日期序列;pd.period_range()生成的是PeriodIndex格式的日期序列。

以下通过生成月时间序列和周时间序列来对比下:

date_rng = pd.date_range('2019-01-01', freq='M', periods=12)
print(f'month date_range():
{date_rng}')
"""
date_range():
DatetimeIndex(['2019-01-31', '2019-02-28', '2019-03-31', '2019-04-30',
 '2019-05-31', '2019-06-30', '2019-07-31', '2019-08-31',
 '2019-09-30', '2019-10-31', '2019-11-30', '2019-12-31'],
 dtype='datetime64[ns]', freq='M')
"""
period_rng = pd.period_range('2019/01/01', freq='M', periods=12)
print(f'month period_range():
{period_rng}')
"""
period_range():
PeriodIndex(['2019-01', '2019-02', '2019-03', '2019-04', '2019-05', '2019-06',
 '2019-07', '2019-08', '2019-09', '2019-10', '2019-11', '2019-12'],
 dtype='period[M]', freq='M')
"""
date_rng = pd.date_range('2019-01-01', freq='W-SUN', periods=12)
print(f'week date_range():
{date_rng}')
"""
week date_range():
DatetimeIndex(['2019-01-06', '2019-01-13', '2019-01-20', '2019-01-27',
 '2019-02-03', '2019-02-10', '2019-02-17', '2019-02-24',
 '2019-03-03', '2019-03-10', '2019-03-17', '2019-03-24'],
 dtype='datetime64[ns]', freq='W-SUN')
"""
period_rng=pd.period_range('2019-01-01',freq='W-SUN',periods=12)
print(f'week period_range():
{period_rng}')
"""
week period_range():
PeriodIndex(['2018-12-31/2019-01-06', '2019-01-07/2019-01-13',
 '2019-01-14/2019-01-20', '2019-01-21/2019-01-27',
 '2019-01-28/2019-02-03', '2019-02-04/2019-02-10',
 '2019-02-11/2019-02-17', '2019-02-18/2019-02-24',
 '2019-02-25/2019-03-03', '2019-03-04/2019-03-10',
 '2019-03-11/2019-03-17', '2019-03-18/2019-03-24'],
 dtype='period[W-SUN]', freq='W-SUN')
"""
date_rng = pd.date_range('2019-01-01 00:00:00', freq='H', periods=12)
print(f'hour date_range():
{date_rng}')
"""
hour date_range():
DatetimeIndex(['2019-01-01 00:00:00', '2019-01-01 01:00:00',
 '2019-01-01 02:00:00', '2019-01-01 03:00:00',
 '2019-01-01 04:00:00', '2019-01-01 05:00:00',
 '2019-01-01 06:00:00', '2019-01-01 07:00:00',
 '2019-01-01 08:00:00', '2019-01-01 09:00:00',
 '2019-01-01 10:00:00', '2019-01-01 11:00:00'],
 dtype='datetime64[ns]', freq='H')
"""
period_rng=pd.period_range('2019-01-01 00:00:00',freq='H',periods=12)
print(f'hour period_range():
{period_rng}')
"""
hour period_range():
PeriodIndex(['2019-01-01 00:00', '2019-01-01 01:00', '2019-01-01 02:00',
 '2019-01-01 03:00', '2019-01-01 04:00', '2019-01-01 05:00',
 '2019-01-01 06:00', '2019-01-01 07:00', '2019-01-01 08:00',
 '2019-01-01 09:00', '2019-01-01 10:00', '2019-01-01 11:00'],
 dtype='period[H]', freq='H')
"""

2、生成Timestamp对象及转换

创建一个Timestamp时间戳对象有pd.Timestamp()方法和pd.to_datetime()方法。如下所示:

ts=pd.Timestamp(2019,1,1)
print(f'pd.Timestamp()-1:{ts}')
#pd.Timestamp()-1:2019-01-01 00:00:00
ts=pd.Timestamp(dt(2019,1,1,hour=0,minute=1,second=1))
print(f'pd.Timestamp()-2:{ts}')
#pd.Timestamp()-2:2019-01-01 00:01:01
ts=pd.Timestamp("2019-1-1 0:1:1")
print(f'pd.Timestamp()-3:{ts}')
#pd.Timestamp()-3:2019-01-01 00:01:01
print(f'pd.Timestamp()-type:{type(ts)}')
#pd.Timestamp()-type:<class 'pandas._libs.tslibs.timestamps.Timestamp'>
#dt=pd.to_datetime(2019,1,1) 不支持
dt=pd.to_datetime(dt(2019,1,1,hour=0,minute=1,second=1))
print(f'pd.to_datetime()-1:{dt}')
#pd.to_datetime()-1:2019-01-01 00:01:01
dt=pd.to_datetime("2019-1-1 0:1:1")
print(f'pd.to_datetime()-2:{dt}')
#pd.to_datetime()-2:2019-01-01 00:01:01
print(f'pd.to_datetime()-type:{type(dt)}')
#pd.to_datetime()-type:<class 'pandas._libs.tslibs.timestamps.Timestamp'>
#pd.to_datetime生成自定义时间序列
dtlist=pd.to_datetime(["2019-1-1 0:1:1", "2019-3-1 0:1:1"])
print(f'pd.to_datetime()-list:{dtlist}')
#pd.to_datetime()-list:DatetimeIndex(['2019-01-01 00:01:01', '2019-03-01 00:01:01'], dtype='datetime64[ns]', freq=None)
#时间戳转换为period月时期
pr = ts.to_period('M')
print(f'ts.to_period():{pr}')
#ts.to_period():2019-01
print(f'pd.to_period()-type:{type(pr)}')
#pd.to_period()-type:<class 'pandas._libs.tslibs.period.Period'>

3、生成period对象及转换

#定义时期period
per=pd.Period('2019')
print(f'pd.Period():{per}')
#pd.Period():2019
per_del=pd.Period('2019')-pd.Period('2018')
print(f'2019和2018间隔{per_del}年')#可以直接+、-整数(代表年)
#2019和2018间隔1年
#时期转换为时间戳
print(per.to_timestamp(how='end'))#2019-12-31 00:00:00
print(per.to_timestamp(how='start'))#2019-01-01 00:00:00

4、生成时间间隔Timedelta

#生成时间间隔Timedelta
print(pd.Timedelta(days=5, minutes=50, seconds=20, milliseconds=10, microseconds=10, nanoseconds=10))
#5 days 00:50:20.010010
#获取当前时间
now=pd.datetime.now()
#计算当前时间往后50天的日期
dt=now+pd.Timedelta(days=50)
print(f'当前时间是{now}, 50天后时间是{dt}')
#当前时间是2019-06-08 17:59:31.726065, 50天后时间是2019-07-28 17:59:31.726065
#只显示年月日
print(dt.strftime('%Y-%m-%d'))#2019-07-28

5、重采样及频率转换

#asfreq 按季度显示索引值
#'DatetimeIndex' object has no attribute 'asfreq'
date=pd.date_range('1/1/2018', periods=20, freq='D')
tsdat_series=pd.Series(range(20),index=date)
tsp_series=tsdat_series.to_period('D')
print(tsp_series.index.asfreq('Q'))
date=pd.period_range('1/1/2018', periods=20, freq='D')
tsper_series=pd.Series(range(20),index=date)
print(tsper_series.index.asfreq('Q'))
"""
PeriodIndex(['2018Q1', '2018Q1', '2018Q1', '2018Q1', '2018Q1', '2018Q1',
 '2018Q1', '2018Q1', '2018Q1', '2018Q1', '2018Q1', '2018Q1',
 '2018Q1', '2018Q1', '2018Q1', '2018Q1', '2018Q1', '2018Q1',
 '2018Q1', '2018Q1'],
 dtype='period[Q-DEC]', freq='Q-DEC')
"""
#resample 按季度统计并显示
print(tsdat_series.resample('Q').sum().to_period('Q'))
"""
2018Q1 190
Freq: Q-DEC, dtype: int64
"""
#groupby 按周进行汇总求平均值
print(tsdat_series.groupby(lambda x:x.weekday).mean())
"""
0 7.0
1 8.0
2 9.0
3 10.0
4 11.0
5 12.0
6 9.5
dtype: float64
"""

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python dict remove数组删除(del,pop)
Mar 24 Python
Python中的下划线详解
Jun 24 Python
Python实现简单文本字符串处理的方法
Jan 22 Python
特征脸(Eigenface)理论基础之PCA主成分分析法
Mar 13 Python
python读取文件名称生成list的方法
Apr 27 Python
Pycharm设置去除显示的波浪线方法
Oct 28 Python
浅谈python3发送post请求参数为空的情况
Dec 28 Python
Python3批量移动指定文件到指定文件夹方法示例
Sep 02 Python
Python爬虫实现的根据分类爬取豆瓣电影信息功能示例
Sep 15 Python
pygame实现打字游戏
Feb 19 Python
Python发起请求提示UnicodeEncodeError错误代码解决方法
Apr 21 Python
python对execl 处理操作代码
Jun 22 Python
简单了解python反射机制的一些知识
Jul 13 #Python
Python3内置模块之base64编解码方法详解
Jul 13 #Python
Python3enumrate和range对比及示例详解
Jul 13 #Python
基于Python的ModbusTCP客户端实现详解
Jul 13 #Python
Python Numpy库datetime类型的处理详解
Jul 13 #Python
Python3内置模块random随机方法小结
Jul 13 #Python
简单了解python的一些位运算技巧
Jul 13 #Python
You might like
PHP用反撇号执行外部命令
2015/04/14 PHP
jQuery建立一个按字母顺序排列的友好页面索引(兼容IE6/7/8)
2013/02/26 Javascript
jquery插件validate验证的小例子
2013/05/08 Javascript
javascript中数组的sort()方法的使用介绍
2013/12/18 Javascript
js中for in的用法示例解析
2013/12/25 Javascript
js清理Word格式示例代码
2014/02/13 Javascript
js监听鼠标事件控制textarea输入字符串的个数
2014/09/29 Javascript
node.js中的querystring.escape方法使用说明
2014/12/10 Javascript
JavaScript中Function()函数的使用教程
2015/06/04 Javascript
如何屏蔽防止别的网站嵌入框架代码
2015/08/24 Javascript
JS更改select内option属性的方法
2015/10/14 Javascript
javascript实现网页端解压并查看zip文件
2015/12/15 Javascript
jQuery EasyUI基础教程之EasyUI常用组件(推荐)
2016/07/15 Javascript
javascript实现圣旨卷轴展开效果(代码分享)
2017/03/23 Javascript
JavaScript使用ZeroClipboard操作剪切板
2017/05/10 Javascript
解决微信小程序防止无法回到主页的问题
2018/09/28 Javascript
详解微信小程序调用支付接口支付
2019/04/28 Javascript
JS实现使用POST方式发送请求
2019/08/30 Javascript
vue导航栏部分的动态渲染实例
2019/11/01 Javascript
react-native聊天室|RN版聊天App仿微信实例|RN仿微信界面
2019/11/12 Javascript
python网络编程学习笔记(八):XML生成与解析(DOM、ElementTree)
2014/06/09 Python
深入学习python多线程与GIL
2019/08/26 Python
python3读取csv文件任意行列代码实例
2020/01/13 Python
Data URI scheme详解和使用实例及图片base64编码实现方法
2014/05/08 HTML / CSS
使用C#编写创建一个线程的代码
2013/01/22 面试题
高中生物教学反思
2014/02/05 职场文书
酒店总经理助理职责
2014/02/12 职场文书
品牌服务方案
2014/06/03 职场文书
安全例会汇报材料
2014/08/23 职场文书
公司租房协议书范本
2014/10/08 职场文书
2014年仓库工作总结
2014/11/20 职场文书
导游词之襄阳古城
2019/09/27 职场文书
2019年二手房买卖合同范本
2019/10/14 职场文书
Mysql官方性能测试工具mysqlslap的使用简介
2021/05/21 MySQL
修改MySQL的数据库引擎为INNODB的方法
2021/05/26 MySQL
「玫瑰之王的葬礼」舞台剧主视觉图公开
2022/03/21 日漫