python+numpy实现的基本矩阵操作示例


Posted in Python onJuly 19, 2019

本文实例讲述了python+numpy实现的基本矩阵操作。分享给大家供大家参考,具体如下:

#! usr/bin/env python
# coding: utf-8
# 学习numpy中矩阵的代码笔记
# 2018年05月29日15:43:40
# 参考网站:http://cs231n.github.io/python-numpy-tutorial/
import numpy as np
#==================矩阵的创建,增删查改,索引,运算=================================#
#==================矩阵的创建,增删查改=================================#
# # 创建行向量
# x = np.array([1,2,3])
# # 修改某个值
# x[0] = 0
# 注意下标索引从0开始,与MATLAB不一样
# print(x)
# print(x.shape)
# print(type(x))
#
# # 创建二维与多维矩阵
# matrix = np.array([[1,2,3],[1,2,3],[2,3,4]]) # 注意这里有一个小括号,小括号中还有一个中括号
# # 取出某个元素
# a1 = matrix[0][0]
# print(a1)
# print(matrix.shape)
#
# # # 创建特殊矩阵
# # 0矩阵
# zeros = np.zeros((2,2))# 注意,这里有两个小括号,并且返回浮点型数据,而不是整形
# print(zeros)
#
# # 创建1矩阵
# ones = np.ones([3,3])# 注意这里也是两个括号,其中里面的小括号也可是中括号,但是不建议使用
# print(ones)
#
# # 创建元素相同()的矩阵
# full = np.full((2,3),2) #其中第一个括号表示矩阵大小,后面的数字表示填充的数字
# print(full)
#
# # 创建对角数为1的矩阵
# diag = np.eye(3,3)#注意这里如果行列数不同,只会让行列下标相等的元素为1
# print(diag)
#
# # 创建随机矩阵(值在0到1之间),注意这个方式不可以重复,也就是随机不可以全部重现,每次运行都会不一样
# random = np.random.random((2,3))
# 写到这里,我需要说明一点,就是如何确定括号的个数
# numpy下的方法肯定是有一个小括号的,且不可以改变
# 想要表达多维阵列,则需要输入一个元祖(小括号)或者列表(中括号)来创建,这时就需要小括号或者中括号
# 如果是自己手敲出多维阵列,每一行需要中括号表示,用逗号分离每一行,然后外层再用一个中括号表示整个矩阵,然后再作为一个举证输入函数中
# print(random)
#=======================矩阵的索引,切片=========================#
metaMatrix = np.array([[1,2,3,4],[5,6,7,8],[9,10,11,12]])#用逗号,而不能用空格
# # 单个元素的索引
# a = metaMatrix[0][0]
# b = metaMatrix[0,0] # 这里不能使用小括号
# print(a)
# print(b)
#
# # 切片操作
# a_ = metaMatrix[0:2,1]# 注意这里冒号后面的数是不索引的,如果缺省就是到最后,冒号前是可以得到的
# # 冒号后的数不索引,这时python的特点,与MATLAB不一样
# print(a_)
#
# # 注意切片操作后矩阵维度的变化
# a1 = metaMatrix[0:1,:]
# a2 = metaMatrix[0,:]
# b = metaMatrix[0,1]
# print(a1)
# print(a2)
# print(b)
# # 注意到这两行代码得到的数据是一样的,但是维度已经发生了变化
# print(a1.shape) #a1仍然是矩阵
# print(a2.shape) #a2则是一个行向量,相比原矩阵,这里就少了一个维度,这与MATLAB有点不同
# print(b.shape) #b是没有维度的,就是一个数而已
#
# # 利用已有矩阵创建新矩阵,方法比较多样化
# SrcMatrix = np.array([[1,2], [3, 4], [5, 6]])
# print(SrcMatrix)
# # 利用矩阵的方式索引原有矩阵
# matrix1 = SrcMatrix[[0,1],[1,1]]# 这时将两个中括号的对应元素组合起来进行索引,是单个元素索引的扩展
# # 进行单个元素索引,然后组合起来,并用np.array创建成np的数组
# matrix2 = np.array([SrcMatrix[0][1],SrcMatrix[1][1]])
# # 如果不用np.array来创建成np的矩阵,就会导致数据格式的变化,对应的操作就会发生变化
# matrix3 = [SrcMatrix[0][1],SrcMatrix[1][1]]
# print(matrix1)
# print(matrix2)
# print(matrix3)
# print(type(matrix1))
# print(type(matrix2))
# print(type(matrix3))
#
# # numpy矩阵的元素索引方式可以用于改变或者选择矩阵不同行的元素(不仅仅是同一列的数据)
# a = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
# b = np.array([0,2,0,1])
# # 先介绍一下np.arrange()函数,表示创建一个从起始值到结束值少1(前面提到过,python中经常不到这个值)的行向量,也可以设定步长
# c = a[np.arange(4),b] #其实就是相当于矩阵方式索引一个矩阵中的元素(这比MATLAB中更加自由一些)
# print(c)
# # 改变矩阵的指定元素
# a[np.arange(4),b] += 10
# print(a)
#
# # 布尔型阵列,可以用来索引一些满足特定条件的元素
# matrix = np.array([[1,2],[3,4],[5,6]])
# bool_id = matrix>2 # 也可以写成bool_id =(matrix>2),注意,写成中括号就是不同含义了
# print(bool_id)
# print(matrix[bool_id])
# # 可以将上面两行代码合成一行
# matrix_ = matrix[matrix>2]# 注意,这里得到的是一维向量
# print(matrix_)
#
#=========================numpy array的数据类型=======================================#
# # numpy的array的数据类型是自动识别的,但也可以指定
# # 如果输入为整形,则会给数据的类型定义为int64
# matrix1 = np.array([1,2,3])
# print(matrix1.dtype)
# # 如果输入的数据为小数点,则会给数据类型定义为float64
# matrix2 = np.array([1.0,2.0,3.0])
# print(matrix2.dtype)
# # 如果有浮点型也有整形数据,会赋值给占字节数多的数据类型,且对应为64的
# matrix3 = np.array([1,2.0])
# print(matrix3.dtype)
# # 也可以指定数据类型
# matrix4 = np.array([1,2],dtype=np.int8)
# print(matrix4.dtype)
# # 当数据本身和指定的数据类型不符合时,会将数据转化成指定的数据类型,有可能会发生溢出
# matrix5 = np.array([1,2000000,3.1],dtype=np.int8)
# print(matrix5)
# print(matrix5.dtype)
#=========================矩阵的运算===================================#
#
# # 两种加法和减法,乘除
# x = np.array([[1,2],[3,4]])
# y = np.array([[5,6],[7,8]])
# sum1 = x + y# 直接使用加法
# sum2 = np.add(x,y)# 运用numpy的函数
# print(sum1)
# print(sum2)
#
# substract1 = x - y
# substract2 = np.subtract(x,y)
# print(substract1)
# print(substract2)
#
# prodution1 = x * y# 这是对应元素的乘法
# prodution2 = np.multiply(x,y)
# print(prodution1)
# print(prodution2)
#
# devide1 = x/y
# devide2 = np.divide(x,y)
# # 注意矩阵进行运算时,数据类型不改变,因此,需要注意溢出现象等
# print(devide1)
# print(devide2)
#
# # 矩阵的两种向量乘法(使用dot)
# x = np.array([[1,2],[3,4]])
# y = np.array([[5,6],[7,8]])
# multiDot1 = x.dot(y)
# multiDot2 = np.dot(x,y)
# print(multiDot1)
# print(multiDot2)
#
# # 矩阵运算基本函数
# x = np.array([[1,2],[3,4]])
# # 求和函数
# # 对所有元素求和
# sum_all = np.sum(x)
# # 对列求和
# sum_column = np.sum(x, 0)# 注意和MATLAB中的区分一下。
# # 对行求和
# sum_row = np.sum(x, 1)
# print(sum_all)
# print(sum_column)
# print(sum_row)
#
# # 矩阵的转置
# x = np.array([[1,2],[3,4]])
# transform = x.T
# print(transform)
#
# # broadcasting的应用,可以进行不同维度的矩阵算数运算
# # 考虑将一个常量行向量加到一个矩阵的每一行上
# # 下面会将x行向量加到y矩阵的每一行上(但是这个方法由于有显示循环,而显示循环比较慢一些,我们经常会采用其他方法)
# y = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
# x = np.array([1, 0, 1])
# y_ = np.empty_like(y) # 创建一个和y相同维度的矩阵,但没有放内容,但是已经开辟了一块内存,其中的数据可能随机
# print(y_)
# for i in range(4):
#  y_[i,:] = y[i,:] + x
# print(y_)
# # 另一种方法是我们先将x复制3份,垂直放置,组成一个矩阵,再进行矩阵加法
# x_ = np.tile(x,(4,1))# np.tile表示复制,(4,1)表示将x作为元素,组成4*1的矩阵形式
# y__ = np.add(y,x_)
# print(y__)
# # 实际上,如果不对x进行处理,而直接将两者相加,如果x和y满足一些条件,x会自动复制
# # 条件是x和y在一个维度上相等,另一个维度上不一样并且可以通过复制可以实现维度相等,则会自动复制
# print(y+x)
# # 这里进行一个其他的测试
# print(x.T+y.T)# 可以看出可以实现列的复制
# 这里进行都不为向量的相加
# a1 = np.array([[1,2],[3,4],[5,6],[7,8]])
# a2 = np.array([[1,0],[0,1]])
# print(a1+a2)# 这里会出错,说明只能自动进行一维数据的复制,多维数据不支持自动复制,而需要显式复制
# # 同样的,加法,减法和除法也都适合上面的自动复制原理
# 将一个矩阵或者向量进行维度的调整
x1 = np.array([1,2,3])
y1 = np.array([1,2])
# 实现x1和y1转置的矩阵乘法,可以先将y1变成列向量
print(np.multiply(x1, np.reshape(y1,(2,1))))
# 试一下其他的维度变化
x2 = np.array([[1,2],[3,4],[5,6],[7,8]])
print(np.reshape(x2, (2,4)))
print(np.reshape(x2, (4,2)))# 基本上按照西安航后列的顺序进行

希望本文所述对大家Python程序设计有所帮助。

Python 相关文章推荐
python中lambda与def用法对比实例分析
Apr 30 Python
Python使用PyCrypto实现AES加密功能示例
May 22 Python
Python实现带参数与不带参数的多重继承示例
Jan 30 Python
PyCharm代码回滚,恢复历史版本的解决方法
Oct 22 Python
Python函数装饰器实现方法详解
Dec 22 Python
python使用matplotlib画柱状图、散点图
Mar 18 Python
浅谈Pytorch中的自动求导函数backward()所需参数的含义
Feb 29 Python
Python + selenium + crontab实现每日定时自动打卡功能
Mar 31 Python
python求前n个阶乘的和实例
Apr 02 Python
三步解决python PermissionError: [WinError 5]拒绝访问的情况
Apr 22 Python
pytorch 预训练模型读取修改相关参数的填坑问题
Jun 05 Python
Python中非常使用的6种基本变量的操作与技巧
Mar 22 Python
由面试题加深对Django的认识理解
Jul 19 #Python
基于Python函数和变量名解析
Jul 19 #Python
python关于矩阵重复赋值覆盖问题的解决方法
Jul 19 #Python
对Python生成器、装饰器、递归的使用详解
Jul 19 #Python
django中SMTP发送邮件配置详解
Jul 19 #Python
对Python函数设计规范详解
Jul 19 #Python
在django view中给form传入参数的例子
Jul 19 #Python
You might like
php类
2006/11/27 PHP
一个PHP日历程序
2006/12/06 PHP
PHP一些常用的正则表达式字符的一些转换
2008/07/29 PHP
PHP连接sql server 2005环境配置及问题解决
2014/08/08 PHP
php数组操作之键名比较与差集、交集赋值的方法
2014/11/10 PHP
PHP实现的json类实例
2015/07/28 PHP
表单提交错误后返回内容消失问题的解决方法(PHP网站)
2015/10/20 PHP
ThinkPHP的SAE开发相关注意事项详解
2016/10/09 PHP
基于win2003虚拟机中apache服务器的访问
2017/08/01 PHP
使用PHP连接数据库_实现用户数据的增删改查的整体操作示例
2017/09/01 PHP
js DOM模型操作
2009/12/28 Javascript
jQuery中:empty选择器用法实例
2014/12/30 Javascript
js自定义select下拉框美化特效
2016/05/12 Javascript
基于MVC+EasyUI的web开发框架之使用云打印控件C-Lodop打印页面或套打报关运单信息
2016/08/29 Javascript
Jquery Easyui表单组件Form使用详解(30)
2016/12/19 Javascript
详解用node.js实现简单的反向代理
2017/06/26 Javascript
Web技术实现移动监测的介绍
2017/09/18 Javascript
vue滚动轴插件better-scroll使用详解
2017/10/17 Javascript
flexible.js实现移动端rem适配方案
2020/04/07 Javascript
python TCP Socket的粘包和分包的处理详解
2018/02/09 Python
python 接口测试response返回数据对比的方法
2018/02/11 Python
分享vim python缩进等一些配置
2018/07/02 Python
Python自动发送邮件的方法实例总结
2018/12/08 Python
Python实现将通信达.day文件读取为DataFrame
2018/12/22 Python
python针对mysql数据库的连接、查询、更新、删除操作示例
2019/09/11 Python
Python利用逻辑回归模型解决MNIST手写数字识别问题详解
2020/01/14 Python
详解PyQt5信号与槽的几种高级玩法
2020/03/24 Python
Django使用list对单个或者多个字段求values值实例
2020/03/31 Python
Django实现celery定时任务过程解析
2020/04/21 Python
浅析Python的命名空间与作用域
2020/11/25 Python
CSS3 translate导致字体模糊的实例代码
2019/08/30 HTML / CSS
英国假睫毛购买网站:FalseEyelashes.co.uk
2018/05/23 全球购物
英文导游欢迎词
2014/01/11 职场文书
欢迎横幅标语
2014/06/17 职场文书
党员自我对照检查材料
2014/08/19 职场文书
音乐研修感悟
2015/11/18 职场文书