numpy linalg模块的具体使用方法


Posted in Python onMay 26, 2019

最近在看机器学习的 LogisticRegressor,BayesianLogisticRegressor算法,里面得到一阶导数矩阵g和二阶导数Hessian矩阵H的时候,用到了这个模块进行求解运算,记录一下。

numpy.linalg模块包含线性代数的函数。使用这个模块,可以计算逆矩阵、求特征值、解线性方程组以及求解行列式等。

import numpy as np
# 1. 计算逆矩阵
# 创建矩阵
A = np.mat("0 1 2;1 0 3;4 -3 8")
print (A)
#[[ 0 1 2]
# [ 1 0 3]
# [ 4 -3 8]]
# 使用inv函数计算逆矩阵
inv = np.linalg.inv(A)
print (inv)
#[[-4.5 7. -1.5]
# [-2. 4. -1. ]
# [ 1.5 -2. 0.5]]
# 检查原矩阵和求得的逆矩阵相乘的结果为单位矩阵
print (A * inv)
#[[ 1. 0. 0.]
# [ 0. 1. 0.]
# [ 0. 0. 1.]]

注:矩阵必须是方阵且可逆,否则会抛出LinAlgError异常。

# 2. 求解线性方程组
# numpy.linalg中的函数solve可以求解形如 Ax = b 的线性方程组,其中 A 为矩阵,b 为一维或二维的数组,x 是未知变量
 
#创建矩阵和数组
B = np.mat("1 -2 1;0 2 -8;-4 5 9")
b = np.array([0,8,-9])
 
# 调用solve函数求解线性方程
x = np.linalg.solve(B,b)
print (x)
#[ 29. 16. 3.]
 
# 使用dot函数检查求得的解是否正确
print (np.dot(B , x))
# [[ 0. 8. -9.]]
# 3. 特征值和特征向量
# 特征值(eigenvalue)即方程 Ax = ax 的根,是一个标量。
 
#其中,A 是一个二维矩阵,x 是一个一维向量。特征向量(eigenvector)是关于特征值的向量
# numpy.linalg模块中,eigvals函数可以计算矩阵的特征值,而eig函数可以返回一个包含特征值和对应的特征向量的元组
 
# 创建一个矩阵
C = np.mat("3 -2;1 0")
 
# 调用eigvals函数求解特征值
c0 = np.linalg.eigvals(C)
print (c0)
# [ 2. 1.]
 
# 使用eig函数求解特征值和特征向量 
#(该函数将返回一个元组,按列排放着特征值和对应的特征向量,其中第一列为特征值,第二列为特征向量)
c1,c2 = np.linalg.eig(C)
print (c1)
# [ 2. 1.] 
print (c2)
#[[ 0.89442719 0.70710678]
# [ 0.4472136 0.70710678]]
 
# 使用dot函数验证求得的解是否正确
for i in range(len(c1)):
print ("left:",np.dot(C,c2[:,i]))
print ("right:",c1[i] * c2[:,i])
#left: [[ 1.78885438]
# [ 0.89442719]]
#right: [[ 1.78885438]
# [ 0.89442719]]
#left: [[ 0.70710678]
# [ 0.70710678]]
#right: [[ 0.70710678]
# [ 0.70710678]]
# 4.奇异值分解
# SVD(Singular Value Decomposition,奇异值分解)是一种因子分解运算,将一个矩阵分解为3个矩阵的乘积
# numpy.linalg模块中的svd函数可以对矩阵进行奇异值分解。该函数返回3个矩阵——U、Sigma和V,其中U和V是正交矩阵,Sigma包含输入矩阵的奇异值。
 
import numpy as np
 
# 分解矩阵
D = np.mat("4 11 14;8 7 -2")
# 使用svd函数分解矩阵
U,Sigma,V = np.linalg.svd(D,full_matrices=False)
print ("U:",U)
#U: [[-0.9486833 -0.31622777]
# [-0.31622777 0.9486833 ]]
print ("Sigma:",Sigma)
#Sigma: [ 18.97366596 9.48683298]
print ("V",V)
#V [[-0.33333333 -0.66666667 -0.66666667]
# [ 0.66666667 0.33333333 -0.66666667]]
# 结果包含等式中左右两端的两个正交矩阵U和V,以及中间的奇异值矩阵Sigma
 
# 使用diag函数生成完整的奇异值矩阵。将分解出的3个矩阵相乘
print (U * np.diag(Sigma) * V)
#[[ 4. 11. 14.]
# [ 8. 7. -2.]]
# 5. 广义逆矩阵
# 使用numpy.linalg模块中的pinv函数进行求解,
# 注:inv函数只接受方阵作为输入矩阵,而pinv函数则没有这个限制
 
import numpy as np
 
# 创建一个矩阵
E = np.mat("4 11 14;8 7 -2")
# 使用pinv函数计算广义逆矩阵
pseudoinv = np.linalg.pinv(E)
print (pseudoinv)
#[[-0.00555556 0.07222222]
# [ 0.02222222 0.04444444]
# [ 0.05555556 -0.05555556]]
 
# 将原矩阵和得到的广义逆矩阵相乘
print (E * pseudoinv)
#[[ 1.00000000e+00 -5.55111512e-16]
# [ 0.00000000e+00 1.00000000e+00]]
# 6. 行列式
# numpy.linalg模块中的det函数可以计算矩阵的行列式
 
import numpy as np
 
# 计算矩阵的行列式
F = np.mat("3 4;5 6")
# 使用det函数计算行列式
print (np.linalg.det(F))
# -2.0

学完这些之后,再用其中的numpy.linalg.solve()函数对(H,g)线性方程组进行求解。

def _fit(self, X, t, max_iter=100): #输入样本 , 0,1标签 ,最大迭代步数
  self._check_binary(t)
  w = np.zeros(np.size(X, 1))  #初始化权重矩阵 X行
  for _ in range(max_iter):
    w_prev = np.copy(w)    #保存原先的权重信息 用来更新权重
    y = self._sigmoid(X @ w)  #sigmoid 特征向量@权重矩阵 输出y
    grad = X.T @ (y - t)    #一阶导数
    hessian = (X.T * y * (1 - y)) @ X  #二阶导数 Hessian矩阵
    try:
      w -= np.linalg.solve(hessian, grad)
      print(w)
    except np.linalg.LinAlgError:
      break
    if np.allclose(w, w_prev): #收敛到一定的精度
      break
  self.w = w
# [-0.17924772 1.02982033 0.54459921]
# [-0.25994586 1.76892341 0.90294418]
# [-0.35180664 2.60346027 1.25122256]
# [-0.468509  3.54309929 1.60131553]
# [-0.58591528 4.43787542 1.93496706]
# [-0.65896159 4.97839095 2.14764763]
# [-0.67659725 5.10615457 2.20048333]
# [-0.67736191 5.11159274 2.20281247]
# [-0.67736325 5.11160214 2.20281657]

PS:更多示例

# 线性代数
# numpy.linalg模块包含线性代数的函数。使用这个模块,可以计算逆矩阵、求特征值、解线性方程组以及求解行列式等。

import numpy as np

# 1. 计算逆矩阵
# 创建矩阵
A = np.mat("0 1 2;1 0 3;4 -3 8")
print (A)
#[[ 0 1 2]
# [ 1 0 3]
# [ 4 -3 8]]

# 使用inv函数计算逆矩阵
inv = np.linalg.inv(A)
print (inv)
#[[-4.5 7. -1.5]
# [-2. 4. -1. ]
# [ 1.5 -2. 0.5]]

# 检查原矩阵和求得的逆矩阵相乘的结果为单位矩阵
print (A * inv)
#[[ 1. 0. 0.]
# [ 0. 1. 0.]
# [ 0. 0. 1.]]

# 注:矩阵必须是方阵且可逆,否则会抛出LinAlgError异常。


# 2. 求解线性方程组
# numpy.linalg中的函数solve可以求解形如 Ax = b 的线性方程组,其中 A 为矩阵,b 为一维或二维的数组,x 是未知变量

import numpy as np

#创建矩阵和数组
B = np.mat("1 -2 1;0 2 -8;-4 5 9")
b = np.array([0,8,-9])

# 调用solve函数求解线性方程
x = np.linalg.solve(B,b)
print (x)
#[ 29. 16. 3.]

# 使用dot函数检查求得的解是否正确
print (np.dot(B , x))
# [[ 0. 8. -9.]]


# 3. 特征值和特征向量
# 特征值(eigenvalue)即方程 Ax = ax 的根,是一个标量。其中,A 是一个二维矩阵,x 是一个一维向量。特征向量(eigenvector)是关于特征值的向量
# numpy.linalg模块中,eigvals函数可以计算矩阵的特征值,而eig函数可以返回一个包含特征值和对应的特征向量的元组 

import numpy as np

# 创建一个矩阵
C = np.mat("3 -2;1 0")

# 调用eigvals函数求解特征值
c0 = np.linalg.eigvals(C)
print (c0)
# [ 2. 1.]

# 使用eig函数求解特征值和特征向量 (该函数将返回一个元组,按列排放着特征值和对应的特征向量,其中第一列为特征值,第二列为特征向量)
c1,c2 = np.linalg.eig(C)
print (c1)
# [ 2. 1.] 
print (c2)
#[[ 0.89442719 0.70710678]
# [ 0.4472136 0.70710678]] 

# 使用dot函数验证求得的解是否正确
for i in range(len(c1)):
 print ("left:",np.dot(C,c2[:,i]))
 print ("right:",c1[i] * c2[:,i])
#left: [[ 1.78885438]
# [ 0.89442719]]
#right: [[ 1.78885438]
# [ 0.89442719]]
#left: [[ 0.70710678]
# [ 0.70710678]]
#right: [[ 0.70710678]
# [ 0.70710678]]

 

# 4.奇异值分解
# SVD(Singular Value Decomposition,奇异值分解)是一种因子分解运算,将一个矩阵分解为3个矩阵的乘积
# numpy.linalg模块中的svd函数可以对矩阵进行奇异值分解。该函数返回3个矩阵——U、Sigma和V,其中U和V是正交矩阵,Sigma包含输入矩阵的奇异值。

import numpy as np

# 分解矩阵
D = np.mat("4 11 14;8 7 -2")
# 使用svd函数分解矩阵
U,Sigma,V = np.linalg.svd(D,full_matrices=False)
print ("U:",U)
#U: [[-0.9486833 -0.31622777]
# [-0.31622777 0.9486833 ]]
print ("Sigma:",Sigma)
#Sigma: [ 18.97366596 9.48683298]
print ("V",V)
#V [[-0.33333333 -0.66666667 -0.66666667]
# [ 0.66666667 0.33333333 -0.66666667]]
# 结果包含等式中左右两端的两个正交矩阵U和V,以及中间的奇异值矩阵Sigma

# 使用diag函数生成完整的奇异值矩阵。将分解出的3个矩阵相乘
print (U * np.diag(Sigma) * V)
#[[ 4. 11. 14.]
# [ 8. 7. -2.]]

# 5. 广义逆矩阵
# 使用numpy.linalg模块中的pinv函数进行求解,
# 注:inv函数只接受方阵作为输入矩阵,而pinv函数则没有这个限制

import numpy as np

# 创建一个矩阵
E = np.mat("4 11 14;8 7 -2")
# 使用pinv函数计算广义逆矩阵
pseudoinv = np.linalg.pinv(E)
print (pseudoinv)
#[[-0.00555556 0.07222222]
# [ 0.02222222 0.04444444]
# [ 0.05555556 -0.05555556]]

# 将原矩阵和得到的广义逆矩阵相乘
print (E * pseudoinv)
#[[ 1.00000000e+00 -5.55111512e-16]
# [ 0.00000000e+00 1.00000000e+00]]

# 6. 行列式
# numpy.linalg模块中的det函数可以计算矩阵的行列式

import numpy as np

# 计算矩阵的行列式
F = np.mat("3 4;5 6")
# 使用det函数计算行列式
print (np.linalg.det(F))
# -2.0

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
为Python的web框架编写MVC配置来使其运行的教程
Apr 30 Python
python 简单搭建阻塞式单进程,多进程,多线程服务的实例
Nov 01 Python
从头学Python之编写可执行的.py文件
Nov 28 Python
Python冲顶大会 快来答题!
Jan 17 Python
django ajax json的实例代码
May 29 Python
python cs架构实现简单文件传输
Mar 20 Python
用Python画小女孩放风筝的示例
Nov 23 Python
wxpython自定义下拉列表框过程图解
Feb 14 Python
Python %r和%s区别代码实例解析
Apr 03 Python
Python logging日志库空间不足问题解决
Sep 14 Python
使用Python制作一个数据预处理小工具(多种操作一键完成)
Feb 07 Python
Python docx库删除复制paragraph及行高设置图片插入示例
Jul 23 Python
python flask解析json数据不完整的解决方法
May 26 #Python
如何使用pyinstaller打包32位的exe程序
May 26 #Python
让你Python到很爽的加速递归函数的装饰器
May 26 #Python
Django框架模板的使用方法示例
May 25 #Python
Django框架搭建的简易图书信息网站案例
May 25 #Python
Django框架实现的分页demo示例
May 25 #Python
Flask框架工厂函数用法实例分析
May 25 #Python
You might like
php中$_POST与php://input的区别实例分析
2015/01/07 PHP
PHP封装类似thinkphp连贯操作数据库Db类与简单应用示例
2019/05/08 PHP
JavaScript 拾漏补遗
2009/12/27 Javascript
细说浏览器特性检测(2)-通用事件检测
2010/11/05 Javascript
一个挺有意思的Javascript小问题说明
2011/09/26 Javascript
《JavaScript高级程序设计》阅读笔记(一) ECMAScript基础
2012/02/27 Javascript
JS实现鼠标箭头变成一个燃烧烛光效果的方法
2015/02/28 Javascript
js判断请求的url是否可访问,支持跨域判断的实现方法
2016/09/17 Javascript
解析AngularJS中get请求URL出现的跨域问题
2016/12/01 Javascript
JavaScript自动点击链接 防止绕过浏览器访问的方法
2017/01/19 Javascript
jQuery中on方法使用注意事项详解
2017/02/15 Javascript
Bootstrap 网格系统布局详解
2017/03/19 Javascript
如何利用@angular/cli V6.0直接开发PWA应用详解
2018/05/06 Javascript
jQuery仿移动端支付宝键盘的实现代码
2018/08/15 jQuery
加快Vue项目的开发速度的方法
2018/12/12 Javascript
JS实现求5的阶乘示例
2019/01/21 Javascript
vue+iview动态渲染表格详解
2019/03/19 Javascript
nodejs搭建本地服务器并访问文件操作示例
2019/05/11 NodeJs
使用imba.io框架得到比 vue 快50倍的性能基准
2019/06/17 Javascript
Javascript var变量删除原理及实现
2020/08/26 Javascript
在vue项目中引用Antv G2,以饼图为例讲解
2020/10/28 Javascript
Python语言技巧之三元运算符使用介绍
2013/03/04 Python
Python中list列表的一些进阶使用方法介绍
2015/08/15 Python
python实现基于SVM手写数字识别功能
2020/05/27 Python
TensorFlow实现Softmax回归模型
2018/03/09 Python
python使用re模块爬取豆瓣Top250电影
2020/10/20 Python
CSS3实现莲花绽放的动画效果
2020/11/06 HTML / CSS
AmazeUI底部导航栏与分享按钮的示例代码
2020/08/18 HTML / CSS
你们项目是如何进行变更控制的
2015/08/26 面试题
女子职高个人自荐书
2014/02/01 职场文书
出纳员岗位职责风险
2014/03/06 职场文书
考试作弊检讨
2015/01/27 职场文书
幼儿教师个人总结
2015/02/05 职场文书
2015年秋学期教研工作总结
2015/10/14 职场文书
JavaScript组合继承详解
2021/11/07 Javascript
详解OpenCV获取高动态范围(HDR)成像
2022/04/29 Python