numpy linalg模块的具体使用方法


Posted in Python onMay 26, 2019

最近在看机器学习的 LogisticRegressor,BayesianLogisticRegressor算法,里面得到一阶导数矩阵g和二阶导数Hessian矩阵H的时候,用到了这个模块进行求解运算,记录一下。

numpy.linalg模块包含线性代数的函数。使用这个模块,可以计算逆矩阵、求特征值、解线性方程组以及求解行列式等。

import numpy as np
# 1. 计算逆矩阵
# 创建矩阵
A = np.mat("0 1 2;1 0 3;4 -3 8")
print (A)
#[[ 0 1 2]
# [ 1 0 3]
# [ 4 -3 8]]
# 使用inv函数计算逆矩阵
inv = np.linalg.inv(A)
print (inv)
#[[-4.5 7. -1.5]
# [-2. 4. -1. ]
# [ 1.5 -2. 0.5]]
# 检查原矩阵和求得的逆矩阵相乘的结果为单位矩阵
print (A * inv)
#[[ 1. 0. 0.]
# [ 0. 1. 0.]
# [ 0. 0. 1.]]

注:矩阵必须是方阵且可逆,否则会抛出LinAlgError异常。

# 2. 求解线性方程组
# numpy.linalg中的函数solve可以求解形如 Ax = b 的线性方程组,其中 A 为矩阵,b 为一维或二维的数组,x 是未知变量
 
#创建矩阵和数组
B = np.mat("1 -2 1;0 2 -8;-4 5 9")
b = np.array([0,8,-9])
 
# 调用solve函数求解线性方程
x = np.linalg.solve(B,b)
print (x)
#[ 29. 16. 3.]
 
# 使用dot函数检查求得的解是否正确
print (np.dot(B , x))
# [[ 0. 8. -9.]]
# 3. 特征值和特征向量
# 特征值(eigenvalue)即方程 Ax = ax 的根,是一个标量。
 
#其中,A 是一个二维矩阵,x 是一个一维向量。特征向量(eigenvector)是关于特征值的向量
# numpy.linalg模块中,eigvals函数可以计算矩阵的特征值,而eig函数可以返回一个包含特征值和对应的特征向量的元组
 
# 创建一个矩阵
C = np.mat("3 -2;1 0")
 
# 调用eigvals函数求解特征值
c0 = np.linalg.eigvals(C)
print (c0)
# [ 2. 1.]
 
# 使用eig函数求解特征值和特征向量 
#(该函数将返回一个元组,按列排放着特征值和对应的特征向量,其中第一列为特征值,第二列为特征向量)
c1,c2 = np.linalg.eig(C)
print (c1)
# [ 2. 1.] 
print (c2)
#[[ 0.89442719 0.70710678]
# [ 0.4472136 0.70710678]]
 
# 使用dot函数验证求得的解是否正确
for i in range(len(c1)):
print ("left:",np.dot(C,c2[:,i]))
print ("right:",c1[i] * c2[:,i])
#left: [[ 1.78885438]
# [ 0.89442719]]
#right: [[ 1.78885438]
# [ 0.89442719]]
#left: [[ 0.70710678]
# [ 0.70710678]]
#right: [[ 0.70710678]
# [ 0.70710678]]
# 4.奇异值分解
# SVD(Singular Value Decomposition,奇异值分解)是一种因子分解运算,将一个矩阵分解为3个矩阵的乘积
# numpy.linalg模块中的svd函数可以对矩阵进行奇异值分解。该函数返回3个矩阵——U、Sigma和V,其中U和V是正交矩阵,Sigma包含输入矩阵的奇异值。
 
import numpy as np
 
# 分解矩阵
D = np.mat("4 11 14;8 7 -2")
# 使用svd函数分解矩阵
U,Sigma,V = np.linalg.svd(D,full_matrices=False)
print ("U:",U)
#U: [[-0.9486833 -0.31622777]
# [-0.31622777 0.9486833 ]]
print ("Sigma:",Sigma)
#Sigma: [ 18.97366596 9.48683298]
print ("V",V)
#V [[-0.33333333 -0.66666667 -0.66666667]
# [ 0.66666667 0.33333333 -0.66666667]]
# 结果包含等式中左右两端的两个正交矩阵U和V,以及中间的奇异值矩阵Sigma
 
# 使用diag函数生成完整的奇异值矩阵。将分解出的3个矩阵相乘
print (U * np.diag(Sigma) * V)
#[[ 4. 11. 14.]
# [ 8. 7. -2.]]
# 5. 广义逆矩阵
# 使用numpy.linalg模块中的pinv函数进行求解,
# 注:inv函数只接受方阵作为输入矩阵,而pinv函数则没有这个限制
 
import numpy as np
 
# 创建一个矩阵
E = np.mat("4 11 14;8 7 -2")
# 使用pinv函数计算广义逆矩阵
pseudoinv = np.linalg.pinv(E)
print (pseudoinv)
#[[-0.00555556 0.07222222]
# [ 0.02222222 0.04444444]
# [ 0.05555556 -0.05555556]]
 
# 将原矩阵和得到的广义逆矩阵相乘
print (E * pseudoinv)
#[[ 1.00000000e+00 -5.55111512e-16]
# [ 0.00000000e+00 1.00000000e+00]]
# 6. 行列式
# numpy.linalg模块中的det函数可以计算矩阵的行列式
 
import numpy as np
 
# 计算矩阵的行列式
F = np.mat("3 4;5 6")
# 使用det函数计算行列式
print (np.linalg.det(F))
# -2.0

学完这些之后,再用其中的numpy.linalg.solve()函数对(H,g)线性方程组进行求解。

def _fit(self, X, t, max_iter=100): #输入样本 , 0,1标签 ,最大迭代步数
  self._check_binary(t)
  w = np.zeros(np.size(X, 1))  #初始化权重矩阵 X行
  for _ in range(max_iter):
    w_prev = np.copy(w)    #保存原先的权重信息 用来更新权重
    y = self._sigmoid(X @ w)  #sigmoid 特征向量@权重矩阵 输出y
    grad = X.T @ (y - t)    #一阶导数
    hessian = (X.T * y * (1 - y)) @ X  #二阶导数 Hessian矩阵
    try:
      w -= np.linalg.solve(hessian, grad)
      print(w)
    except np.linalg.LinAlgError:
      break
    if np.allclose(w, w_prev): #收敛到一定的精度
      break
  self.w = w
# [-0.17924772 1.02982033 0.54459921]
# [-0.25994586 1.76892341 0.90294418]
# [-0.35180664 2.60346027 1.25122256]
# [-0.468509  3.54309929 1.60131553]
# [-0.58591528 4.43787542 1.93496706]
# [-0.65896159 4.97839095 2.14764763]
# [-0.67659725 5.10615457 2.20048333]
# [-0.67736191 5.11159274 2.20281247]
# [-0.67736325 5.11160214 2.20281657]

PS:更多示例

# 线性代数
# numpy.linalg模块包含线性代数的函数。使用这个模块,可以计算逆矩阵、求特征值、解线性方程组以及求解行列式等。

import numpy as np

# 1. 计算逆矩阵
# 创建矩阵
A = np.mat("0 1 2;1 0 3;4 -3 8")
print (A)
#[[ 0 1 2]
# [ 1 0 3]
# [ 4 -3 8]]

# 使用inv函数计算逆矩阵
inv = np.linalg.inv(A)
print (inv)
#[[-4.5 7. -1.5]
# [-2. 4. -1. ]
# [ 1.5 -2. 0.5]]

# 检查原矩阵和求得的逆矩阵相乘的结果为单位矩阵
print (A * inv)
#[[ 1. 0. 0.]
# [ 0. 1. 0.]
# [ 0. 0. 1.]]

# 注:矩阵必须是方阵且可逆,否则会抛出LinAlgError异常。


# 2. 求解线性方程组
# numpy.linalg中的函数solve可以求解形如 Ax = b 的线性方程组,其中 A 为矩阵,b 为一维或二维的数组,x 是未知变量

import numpy as np

#创建矩阵和数组
B = np.mat("1 -2 1;0 2 -8;-4 5 9")
b = np.array([0,8,-9])

# 调用solve函数求解线性方程
x = np.linalg.solve(B,b)
print (x)
#[ 29. 16. 3.]

# 使用dot函数检查求得的解是否正确
print (np.dot(B , x))
# [[ 0. 8. -9.]]


# 3. 特征值和特征向量
# 特征值(eigenvalue)即方程 Ax = ax 的根,是一个标量。其中,A 是一个二维矩阵,x 是一个一维向量。特征向量(eigenvector)是关于特征值的向量
# numpy.linalg模块中,eigvals函数可以计算矩阵的特征值,而eig函数可以返回一个包含特征值和对应的特征向量的元组 

import numpy as np

# 创建一个矩阵
C = np.mat("3 -2;1 0")

# 调用eigvals函数求解特征值
c0 = np.linalg.eigvals(C)
print (c0)
# [ 2. 1.]

# 使用eig函数求解特征值和特征向量 (该函数将返回一个元组,按列排放着特征值和对应的特征向量,其中第一列为特征值,第二列为特征向量)
c1,c2 = np.linalg.eig(C)
print (c1)
# [ 2. 1.] 
print (c2)
#[[ 0.89442719 0.70710678]
# [ 0.4472136 0.70710678]] 

# 使用dot函数验证求得的解是否正确
for i in range(len(c1)):
 print ("left:",np.dot(C,c2[:,i]))
 print ("right:",c1[i] * c2[:,i])
#left: [[ 1.78885438]
# [ 0.89442719]]
#right: [[ 1.78885438]
# [ 0.89442719]]
#left: [[ 0.70710678]
# [ 0.70710678]]
#right: [[ 0.70710678]
# [ 0.70710678]]

 

# 4.奇异值分解
# SVD(Singular Value Decomposition,奇异值分解)是一种因子分解运算,将一个矩阵分解为3个矩阵的乘积
# numpy.linalg模块中的svd函数可以对矩阵进行奇异值分解。该函数返回3个矩阵——U、Sigma和V,其中U和V是正交矩阵,Sigma包含输入矩阵的奇异值。

import numpy as np

# 分解矩阵
D = np.mat("4 11 14;8 7 -2")
# 使用svd函数分解矩阵
U,Sigma,V = np.linalg.svd(D,full_matrices=False)
print ("U:",U)
#U: [[-0.9486833 -0.31622777]
# [-0.31622777 0.9486833 ]]
print ("Sigma:",Sigma)
#Sigma: [ 18.97366596 9.48683298]
print ("V",V)
#V [[-0.33333333 -0.66666667 -0.66666667]
# [ 0.66666667 0.33333333 -0.66666667]]
# 结果包含等式中左右两端的两个正交矩阵U和V,以及中间的奇异值矩阵Sigma

# 使用diag函数生成完整的奇异值矩阵。将分解出的3个矩阵相乘
print (U * np.diag(Sigma) * V)
#[[ 4. 11. 14.]
# [ 8. 7. -2.]]

# 5. 广义逆矩阵
# 使用numpy.linalg模块中的pinv函数进行求解,
# 注:inv函数只接受方阵作为输入矩阵,而pinv函数则没有这个限制

import numpy as np

# 创建一个矩阵
E = np.mat("4 11 14;8 7 -2")
# 使用pinv函数计算广义逆矩阵
pseudoinv = np.linalg.pinv(E)
print (pseudoinv)
#[[-0.00555556 0.07222222]
# [ 0.02222222 0.04444444]
# [ 0.05555556 -0.05555556]]

# 将原矩阵和得到的广义逆矩阵相乘
print (E * pseudoinv)
#[[ 1.00000000e+00 -5.55111512e-16]
# [ 0.00000000e+00 1.00000000e+00]]

# 6. 行列式
# numpy.linalg模块中的det函数可以计算矩阵的行列式

import numpy as np

# 计算矩阵的行列式
F = np.mat("3 4;5 6")
# 使用det函数计算行列式
print (np.linalg.det(F))
# -2.0

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
跟老齐学Python之Import 模块
Oct 13 Python
Python中的pprint折腾记
Jan 21 Python
python通过socket实现多个连接并实现ssh功能详解
Nov 08 Python
Python中elasticsearch插入和更新数据的实现方法
Apr 01 Python
详解Python3.6安装psutil模块和功能简介
May 30 Python
Python实现朴素贝叶斯分类器的方法详解
Jul 04 Python
opencv python统计及绘制直方图的方法
Jan 21 Python
python实现字符串加密成纯数字
Mar 19 Python
pytorch自定义初始化权重的方法
Aug 17 Python
python 生成器和迭代器的原理解析
Oct 12 Python
新版Pycharm中Matplotlib不会弹出独立的显示窗口的问题
Jun 02 Python
如何利用Python给自己的头像加一个小国旗(小月饼)
Oct 02 Python
python flask解析json数据不完整的解决方法
May 26 #Python
如何使用pyinstaller打包32位的exe程序
May 26 #Python
让你Python到很爽的加速递归函数的装饰器
May 26 #Python
Django框架模板的使用方法示例
May 25 #Python
Django框架搭建的简易图书信息网站案例
May 25 #Python
Django框架实现的分页demo示例
May 25 #Python
Flask框架工厂函数用法实例分析
May 25 #Python
You might like
array_multisort实现PHP多维数组排序示例讲解
2011/01/04 PHP
php实现统计网站在线人数的方法
2015/05/12 PHP
在CentOS系统上从零开始搭建WordPress博客的全流程记录
2016/04/21 PHP
Windows平台实现PHP连接SQL Server2008的方法
2017/07/26 PHP
PHP实现微信支付(jsapi支付)流程步骤详解
2018/03/15 PHP
php实现数组中出现次数超过一半的数字的统计方法
2018/10/14 PHP
一个对于js this关键字的问题
2007/01/09 Javascript
遨游,飞飞,IE,空中网 浏览器无提示关闭方法
2011/07/11 Javascript
jquery操作cookie插件分享
2014/01/14 Javascript
JS调试必备的5个debug技巧
2014/03/07 Javascript
在Docker快速部署Node.js应用的详细步骤
2016/09/02 Javascript
JavaScript中常用的验证reg
2016/10/13 Javascript
React组件的三种写法总结
2017/01/12 Javascript
AngularJS 教程及实例代码
2017/10/23 Javascript
详解微信小程序中组件通讯
2018/10/30 Javascript
[55:04]海涛DOTA2死魂复燃6.82版本介绍
2014/09/28 DOTA
[01:01:01]完美世界DOTA2联赛循环赛 GXR vs FTD BO2第一场 10.29
2020/10/29 DOTA
Python求算数平方根和约数的方法汇总
2016/03/09 Python
python中os模块详解
2016/10/14 Python
Python正则表达式经典入门教程
2017/05/22 Python
利用python在大量数据文件下删除某一行的例子
2019/08/21 Python
python批量合成bilibili的m4s缓存文件为MP4格式 ver2.5
2020/12/01 Python
CSS3制作彩色进度条样式的代码示例分享
2016/06/23 HTML / CSS
html5仿支付宝密码框的实现代码
2017/09/06 HTML / CSS
世界各地的旅游、观光和活动:Isango!
2019/10/29 全球购物
理工大学毕业生自荐信
2013/11/01 职场文书
应届大学生的推荐信
2013/11/20 职场文书
金融专业个人求职信范文
2013/11/28 职场文书
大学生村官演讲稿
2014/04/25 职场文书
优秀学生干部先进事迹材料
2014/05/26 职场文书
2015年保险公司个人工作总结
2015/05/22 职场文书
Mysql 如何查询时间段交集
2021/06/08 MySQL
postgresql无序uuid性能测试及对数据库的影响
2021/06/11 PostgreSQL
python3实现常见的排序算法(示例代码)
2021/07/04 Python
Python可变集合和不可变集合的构造方法大全
2021/12/06 Python
openGauss数据库JDBC环境连接配置的详细过程(Eclipse)
2022/06/01 Java/Android