Python编程语言的35个与众不同之处(语言特征和使用技巧)


Posted in Python onJuly 07, 2014

一、Python介绍

从我开始学习Python时我就决定维护一个经常使用的“窍门”列表。不论何时当我看到一段让我觉得“酷,这样也行!”的代码时(在一个例子中、在StackOverflow、在开源码软件中,等等),我会尝试它直到理解它,然后把它添加到列表中。这篇文章是清理过列表的一部分。如果你是一个有经验的Python程序员,尽管你可能已经知道一些,但你仍能发现一些你不知道的。如果你是一个正在学习Python的C、C++或Java程序员,或者刚开始学习编程,那么你会像我一样发现它们中的很多非常有用。

每个窍门或语言特性只能通过实例来验证,无需过多解释。虽然我已尽力使例子清晰,但它们中的一些仍会看起来有些复杂,这取决于你的熟悉程度。所以如果看过例子后还不清楚的话,标题能够提供足够的信息让你通过Google获取详细的内容。

二、Python的语言特征

列表按难度排序,常用的语言特征和技巧放在前面。

1. 分拆

>>> a, b, c = 1, 2, 3

>>> a, b, c

(1, 2, 3)

>>> a, b, c = [1, 2, 3]

>>> a, b, c

(1, 2, 3)

>>> a, b, c = (2 * i + 1 for i in range(3))

>>> a, b, c

(1, 3, 5)

>>> a, (b, c), d = [1, (2, 3), 4]

>>> a

1

>>> b

2

>>> c

3

>>> d

4

2.交换变量分拆

>>> a, b = 1, 2

>>> a, b = b, a

>>> a, b

(2, 1)

3.拓展分拆 (Python 3下适用)

>>> a, *b, c = [1, 2, 3, 4, 5]

>>> a

1

>>> b

[2, 3, 4]

>>> c

5

4.负索引
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> a[-1]

10

>>> a[-3]

8

5.列表切片 (a[start:end])
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> a[2:8]

[2, 3, 4, 5, 6, 7]

6.使用负索引的列表切片
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> a[-4:-2]

[7, 8]

7.带步进值的列表切片 (a[start:end:step])
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> a[::2]

[0, 2, 4, 6, 8, 10]

>>> a[::3]

[0, 3, 6, 9]

>>> a[2:8:2]

[2, 4, 6]

8.负步进值得列表切片
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> a[::-1]

[10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

>>> a[::-2]

[10, 8, 6, 4, 2, 0]

9.列表切片赋值
>>> a = [1, 2, 3, 4, 5]

>>> a[2:3] = [0, 0]

>>> a

[1, 2, 0, 0, 4, 5]

>>> a[1:1] = [8, 9]

>>> a

[1, 8, 9, 2, 0, 0, 4, 5]

>>> a[1:-1] = []

>>> a

[1, 5]

10.命名切片 (slice(start, end, step))
>>> a = [0, 1, 2, 3, 4, 5]

>>> LASTTHREE = slice(-3, None)

>>> LASTTHREE

slice(-3, None, None)

>>> a[LASTTHREE]

[3, 4, 5]

11.zip打包解包列表和倍数
>>> a = [1, 2, 3]

>>> b = ['a', 'b', 'c']

>>> z = zip(a, b)

>>> z

[(1, 'a'), (2, 'b'), (3, 'c')]

>>> zip(*z)

[(1, 2, 3), ('a', 'b', 'c')]

12.使用zip合并相邻的列表项
>>> a = [1, 2, 3, 4, 5, 6]

>>> zip(*([iter(a)] * 2))

[(1, 2), (3, 4), (5, 6)]

 

>>> group_adjacent = lambda a, k: zip(*([iter(a)] * k))

>>> group_adjacent(a, 3)

[(1, 2, 3), (4, 5, 6)]

>>> group_adjacent(a, 2)

[(1, 2), (3, 4), (5, 6)]

>>> group_adjacent(a, 1)

[(1,), (2,), (3,), (4,), (5,), (6,)]

 

>>> zip(a[::2], a[1::2])

[(1, 2), (3, 4), (5, 6)]

 

>>> zip(a[::3], a[1::3], a[2::3])

[(1, 2, 3), (4, 5, 6)]

 

>>> group_adjacent = lambda a, k: zip(*(a[i::k] for i in range(k)))

>>> group_adjacent(a, 3)

[(1, 2, 3), (4, 5, 6)]

>>> group_adjacent(a, 2)

[(1, 2), (3, 4), (5, 6)]

>>> group_adjacent(a, 1)

[(1,), (2,), (3,), (4,), (5,), (6,)]

13.使用zip和iterators生成滑动窗口 (n -grams)
>>> from itertools import islice

>>> def n_grams(a, n):

...     z = (islice(a, i, None) for i in range(n))

...     return zip(*z)

...

>>> a = [1, 2, 3, 4, 5, 6]

>>> n_grams(a, 3)

[(1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6)]

>>> n_grams(a, 2)

[(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)]

>>> n_grams(a, 4)

[(1, 2, 3, 4), (2, 3, 4, 5), (3, 4, 5, 6)]

14.使用zip反转字典
>>> m = {'a': 1, 'b': 2, 'c': 3, 'd': 4}

>>> m.items()

[('a', 1), ('c', 3), ('b', 2), ('d', 4)]

>>> zip(m.values(), m.keys())

[(1, 'a'), (3, 'c'), (2, 'b'), (4, 'd')]

>>> mi = dict(zip(m.values(), m.keys()))

>>> mi

{1: 'a', 2: 'b', 3: 'c', 4: 'd'}

15.摊平列表:
>>> a = [[1, 2], [3, 4], [5, 6]]

>>> list(itertools.chain.from_iterable(a))

[1, 2, 3, 4, 5, 6]

 

>>> sum(a, [])

[1, 2, 3, 4, 5, 6]

 

>>> [x for l in a for x in l]

[1, 2, 3, 4, 5, 6]

 

>>> a = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]

>>> [x for l1 in a for l2 in l1 for x in l2]

[1, 2, 3, 4, 5, 6, 7, 8]

 

>>> a = [1, 2, [3, 4], [[5, 6], [7, 8]]]

>>> flatten = lambda x: [y for l in x for y in flatten(l)] if type(x) is list else [x]

>>> flatten(a)

[1, 2, 3, 4, 5, 6, 7, 8]

 

注意: 根据Python的文档,itertools.chain.from_iterable是首选。

16.生成器表达式

>>> g = (x ** 2 for x in xrange(10))

>>> next(g)

0

>>> next(g)

1

>>> next(g)

4

>>> next(g)

9

>>> sum(x ** 3 for x in xrange(10))

2025

>>> sum(x ** 3 for x in xrange(10) if x % 3 == 1)

408

17.迭代字典
>>> m = {x: x ** 2 for x in range(5)}

>>> m

{0: 0, 1: 1, 2: 4, 3: 9, 4: 16}

 

>>> m = {x: 'A' + str(x) for x in range(10)}

>>> m

{0: 'A0', 1: 'A1', 2: 'A2', 3: 'A3', 4: 'A4', 5: 'A5', 6: 'A6', 7: 'A7', 8: 'A8', 9: 'A9'}

18.通过迭代字典反转字典
>>> m = {'a': 1, 'b': 2, 'c': 3, 'd': 4}

>>> m

{'d': 4, 'a': 1, 'b': 2, 'c': 3}

>>> {v: k for k, v in m.items()}

{1: 'a', 2: 'b', 3: 'c', 4: 'd'}

19.命名序列 (collections.namedtuple)
>>> Point = collections.namedtuple('Point', ['x', 'y'])

>>> p = Point(x=1.0, y=2.0)

>>> p

Point(x=1.0, y=2.0)

>>> p.x

1.0

>>> p.y

2.0

20.命名列表的继承:
>>> class Point(collections.namedtuple('PointBase', ['x', 'y'])):

...     __slots__ = ()

...     def __add__(self, other):

...             return Point(x=self.x + other.x, y=self.y + other.y)

...

>>> p = Point(x=1.0, y=2.0)

>>> q = Point(x=2.0, y=3.0)

>>> p + q

Point(x=3.0, y=5.0)

21.集合及集合操作
>>> A = {1, 2, 3, 3}

>>> A

set([1, 2, 3])

>>> B = {3, 4, 5, 6, 7}

>>> B

set([3, 4, 5, 6, 7])

>>> A | B

set([1, 2, 3, 4, 5, 6, 7])

>>> A & B

set([3])

>>> A - B

set([1, 2])

>>> B - A

set([4, 5, 6, 7])

>>> A ^ B

set([1, 2, 4, 5, 6, 7])

>>> (A ^ B) == ((A - B) | (B - A))

True

22.多重集及其操作 (collections.Counter)
>>> A = collections.Counter([1, 2, 2])

>>> B = collections.Counter([2, 2, 3])

>>> A

Counter({2: 2, 1: 1})

>>> B

Counter({2: 2, 3: 1})

>>> A | B

Counter({2: 2, 1: 1, 3: 1})

>>> A & B

Counter({2: 2})

>>> A + B

Counter({2: 4, 1: 1, 3: 1})

>>> A - B

Counter({1: 1})

>>> B - A

Counter({3: 1})

23.迭代中最常见的元素 (collections.Counter)
>>> A = collections.Counter([1, 1, 2, 2, 3, 3, 3, 3, 4, 5, 6, 7])

>>> A

Counter({3: 4, 1: 2, 2: 2, 4: 1, 5: 1, 6: 1, 7: 1})

>>> A.most_common(1)

[(3, 4)]

>>> A.most_common(3)

[(3, 4), (1, 2), (2, 2)]

24.双端队列 (collections.deque)
>>> Q = collections.deque()

>>> Q.append(1)

>>> Q.appendleft(2)

>>> Q.extend([3, 4])

>>> Q.extendleft([5, 6])

>>> Q

deque([6, 5, 2, 1, 3, 4])

>>> Q.pop()

4

>>> Q.popleft()

6

>>> Q

deque([5, 2, 1, 3])

>>> Q.rotate(3)

>>> Q

deque([2, 1, 3, 5])

>>> Q.rotate(-3)

>>> Q

deque([5, 2, 1, 3])

25.有最大长度的双端队列 (collections.deque)
>>> last_three = collections.deque(maxlen=3)

>>> for i in xrange(10):

...     last_three.append(i)

...     print ', '.join(str(x) for x in last_three)

...

0

0, 1

0, 1, 2

1, 2, 3

2, 3, 4

3, 4, 5

4, 5, 6

5, 6, 7

6, 7, 8

7, 8, 9

26.字典排序 (collections.OrderedDict)
>>> m = dict((str(x), x) for x in range(10))

>>> print ', '.join(m.keys())

1, 0, 3, 2, 5, 4, 7, 6, 9, 8

>>> m = collections.OrderedDict((str(x), x) for x in range(10))

>>> print ', '.join(m.keys())

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

>>> m = collections.OrderedDict((str(x), x) for x in range(10, 0, -1))

>>> print ', '.join(m.keys())

10, 9, 8, 7, 6, 5, 4, 3, 2, 1

27.缺省字典 (collections.defaultdict)
>>> m = dict()

>>> m['a']

Traceback (most recent call last):

  File "<stdin>", line 1, in <module>

KeyError: 'a'

>>>

>>> m = collections.defaultdict(int)

>>> m['a']

0

>>> m['b']

0

>>> m = collections.defaultdict(str)

>>> m['a']

''

>>> m['b'] += 'a'

>>> m['b']

'a'

>>> m = collections.defaultdict(lambda: '[default value]')

>>> m['a']

'[default value]'

>>> m['b']

'[default value]'

28. 用缺省字典表示简单的树
>>> import json

>>> tree = lambda: collections.defaultdict(tree)

>>> root = tree()

>>> root['menu']['id'] = 'file'

>>> root['menu']['value'] = 'File'

>>> root['menu']['menuitems']['new']['value'] = 'New'

>>> root['menu']['menuitems']['new']['onclick'] = 'new();'

>>> root['menu']['menuitems']['open']['value'] = 'Open'

>>> root['menu']['menuitems']['open']['onclick'] = 'open();'

>>> root['menu']['menuitems']['close']['value'] = 'Close'

>>> root['menu']['menuitems']['close']['onclick'] = 'close();'

>>> print json.dumps(root, sort_keys=True, indent=4, separators=(',', ': '))

{

    "menu": {

        "id": "file",

        "menuitems": {

            "close": {

                "onclick": "close();",

                "value": "Close"

            },

            "new": {

                "onclick": "new();",

                "value": "New"

            },

            "open": {

                "onclick": "open();",

                "value": "Open"

            }

        },

        "value": "File"

    }

}

 

(到https://gist.github.com/hrldcpr/2012250查看详情)

29.映射对象到唯一的序列数 (collections.defaultdict)

>>> import itertools, collections

>>> value_to_numeric_map = collections.defaultdict(itertools.count().next)

>>> value_to_numeric_map['a']

0

>>> value_to_numeric_map['b']

1

>>> value_to_numeric_map['c']

2

>>> value_to_numeric_map['a']

0

>>> value_to_numeric_map['b']

1

30.最大最小元素 (heapq.nlargest和heapq.nsmallest)
>>> a = [random.randint(0, 100) for __ in xrange(100)]

>>> heapq.nsmallest(5, a)

[3, 3, 5, 6, 8]

>>> heapq.nlargest(5, a)

[100, 100, 99, 98, 98]

31.笛卡尔乘积 (itertools.product)
>>> for p in itertools.product([1, 2, 3], [4, 5]):

(1, 4)

(1, 5)

(2, 4)

(2, 5)

(3, 4)

(3, 5)

>>> for p in itertools.product([0, 1], repeat=4):

...     print ''.join(str(x) for x in p)

...

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

32.组合的组合和置换 (itertools.combinations 和 itertools.combinations_with_replacement)
>>> for c in itertools.combinations([1, 2, 3, 4, 5], 3):

...     print ''.join(str(x) for x in c)

...

123

124

125

134

135

145

234

235

245

345

>>> for c in itertools.combinations_with_replacement([1, 2, 3], 2):

...     print ''.join(str(x) for x in c)

...

11

12

13

22

23

33

33.排序 (itertools.permutations)
>>> for p in itertools.permutations([1, 2, 3, 4]):

...     print ''.join(str(x) for x in p)

...

1234

1243

1324

1342

1423

1432

2134

2143

2314

2341

2413

2431

3124

3142

3214

3241

3412

3421

4123

4132

4213

4231

4312

4321

34.链接的迭代 (itertools.chain)
>>> a = [1, 2, 3, 4]

>>> for p in itertools.chain(itertools.combinations(a, 2), itertools.combinations(a, 3)):

...     print p

...

(1, 2)

(1, 3)

(1, 4)

(2, 3)

(2, 4)

(3, 4)

(1, 2, 3)

(1, 2, 4)

(1, 3, 4)

(2, 3, 4)

>>> for subset in itertools.chain.from_iterable(itertools.combinations(a, n) for n in range(len(a) + 1))

...     print subset

...

()

(1,)

(2,)

(3,)

(4,)

(1, 2)

(1, 3)

(1, 4)

(2, 3)

(2, 4)

(3, 4)

(1, 2, 3)

(1, 2, 4)

(1, 3, 4)

(2, 3, 4)

(1, 2, 3, 4)

35.按给定值分组行 (itertools.groupby)
>>> from operator import itemgetter

>>> import itertools

>>> with open('contactlenses.csv', 'r') as infile:

...     data = [line.strip().split(',') for line in infile]

...

>>> data = data[1:]

>>> def print_data(rows):

...     print '\n'.join('\t'.join('{: <16}'.format(s) for s in row) for row in rows)

...

 

>>> print_data(data)

young               myope                   no                      reduced                 none

young               myope                   no                      normal                  soft

young               myope                   yes                     reduced                 none

young               myope                   yes                     normal                  hard

young               hypermetrope            no                      reduced                 none

young               hypermetrope            no                      normal                  soft

young               hypermetrope            yes                     reduced                 none

young               hypermetrope            yes                     normal                  hard

pre-presbyopic      myope                   no                      reduced                 none

pre-presbyopic      myope                   no                      normal                  soft

pre-presbyopic      myope                   yes                     reduced                 none

pre-presbyopic      myope                   yes                     normal                  hard

pre-presbyopic      hypermetrope            no                      reduced                 none

pre-presbyopic      hypermetrope            no                      normal                  soft

pre-presbyopic      hypermetrope            yes                     reduced                 none

pre-presbyopic      hypermetrope            yes                     normal                  none

presbyopic          myope                   no                      reduced                 none

presbyopic          myope                   no                      normal                  none

presbyopic          myope                   yes                     reduced                 none

presbyopic          myope                   yes                     normal                  hard

presbyopic          hypermetrope            no                      reduced                 none

presbyopic          hypermetrope            no                      normal                  soft

presbyopic          hypermetrope            yes                     reduced                 none

presbyopic          hypermetrope            yes                     normal                  none

 

>>> data.sort(key=itemgetter(-1))

>>> for value, group in itertools.groupby(data, lambda r: r[-1]):

...     print '-----------'

...     print 'Group: ' + value

...     print_data(group)

...

-----------

Group: hard

young               myope                   yes                     normal                  hard

young               hypermetrope            yes                     normal                  hard

pre-presbyopic      myope                   yes                     normal                  hard

presbyopic          myope                   yes                     normal                  hard

-----------

Group: none

young               myope                   no                      reduced                 none

young               myope                   yes                     reduced                 none

young               hypermetrope            no                      reduced                 none

young               hypermetrope            yes                     reduced                 none

pre-presbyopic      myope                   no                      reduced                 none

pre-presbyopic      myope                   yes                     reduced                 none

pre-presbyopic      hypermetrope            no                      reduced                 none

pre-presbyopic      hypermetrope            yes                     reduced                 none

pre-presbyopic      hypermetrope            yes                     normal                  none

presbyopic          myope                   no                      reduced                 none

presbyopic          myope                   no                      normal                  none

presbyopic          myope                   yes                     reduced                 none

presbyopic          hypermetrope            no                      reduced                 none

presbyopic          hypermetrope            yes                     reduced                 none

presbyopic          hypermetrope            yes                     normal                  none

-----------

Group: soft

young               myope                   no                      normal                  soft

young               hypermetrope            no                      normal                  soft

pre-presbyopic      myope                   no                      normal                  soft

pre-presbyopic      hypermetrope            no                      normal                  soft

presbyopic          hypermetrope            no                      normal 
Python 相关文章推荐
Python selenium 父子、兄弟、相邻节点定位方式详解
Sep 15 Python
Python进阶_关于命名空间与作用域(详解)
May 29 Python
python实现感知器
Dec 19 Python
单链表反转python实现代码示例
Feb 08 Python
Numpy截取指定范围内的数据方法
Nov 14 Python
Python mutiprocessing多线程池pool操作示例
Jan 30 Python
python 图片去噪的方法示例
Jul 09 Python
python简单实现矩阵的乘,加,转置和逆运算示例
Jul 10 Python
Python+OpenCV+图片旋转并用原底色填充新四角的例子
Dec 12 Python
解决Python安装cryptography报错问题
Sep 03 Python
Python基于locals返回作用域字典
Oct 17 Python
Python实现迪杰斯特拉算法并生成最短路径的示例代码
Dec 01 Python
python基于mysql实现的简单队列以及跨进程锁实例详解
Jul 07 #Python
python中使用urllib2获取http请求状态码的代码例子
Jul 07 #Python
Python中使用urllib2防止302跳转的代码例子
Jul 07 #Python
python中使用urllib2伪造HTTP报头的2个方法
Jul 07 #Python
python实现多线程采集的2个代码例子
Jul 07 #Python
Python程序员开发中常犯的10个错误
Jul 07 #Python
python采用requests库模拟登录和抓取数据的简单示例
Jul 05 #Python
You might like
php中常用编辑器推荐
2007/01/02 PHP
php smarty模版引擎中的缓存应用
2009/12/11 PHP
PHP下对字符串的递增运算代码
2010/08/21 PHP
PHP中使用cURL实现Get和Post请求的方法
2013/03/13 PHP
php+ajax无刷新上传图片实例代码
2015/11/17 PHP
用dom+xhtml+css制作的一个相册效果代码打包下载
2008/01/24 Javascript
HTML上传控件取消选择
2013/03/06 Javascript
Ajax异步提交表单数据的说明及方法实例
2013/06/22 Javascript
js动态调用css属性的小规律及实例说明
2013/12/28 Javascript
jQuery$命名冲突怎么办如何解决
2014/01/16 Javascript
javascript中递归函数用法注意点
2015/07/30 Javascript
对javascript继承的理解
2016/10/11 Javascript
关于webpack代码拆分的解析
2017/07/20 Javascript
Vue单文件组件的如何使用方式介绍
2017/07/28 Javascript
bootstrap响应式导航条模板使用详解(含下拉菜单,弹出框)
2017/11/17 Javascript
利用JS如何获取form表单数据
2019/12/19 Javascript
Python标准库urllib2的一些使用细节总结
2015/03/16 Python
Python验证企业工商注册码
2015/10/25 Python
网站渗透常用Python小脚本查询同ip网站
2017/05/08 Python
利用Python读取txt文档的方法讲解
2018/06/23 Python
eclipse创建python项目步骤详解
2019/05/10 Python
python删除文件夹下相同文件和无法打开的图片
2019/07/16 Python
Python 模拟生成动态产生验证码图片的方法
2020/02/01 Python
python实现五子棋程序
2020/04/24 Python
使用npy转image图像并保存的实例
2020/07/01 Python
Python 常用日期处理 -- calendar 与 dateutil 模块的使用
2020/09/02 Python
css3中新增的样式使用示例附效果图
2014/08/19 HTML / CSS
用CSS3来实现社交分享按钮
2014/11/11 HTML / CSS
Topshop法国官网:英国快速时尚品牌
2018/04/08 全球购物
加利福尼亚州威尼斯的女性奢侈品设计师服装和概念店:Mona Moore
2018/09/13 全球购物
预备党员转正思想汇报
2014/01/12 职场文书
完美的中文自荐信
2014/05/24 职场文书
2015年复活节活动总结
2015/02/27 职场文书
2015年“7.11”世界人口日宣传活动方案
2015/05/06 职场文书
2016新年致辞
2015/08/01 职场文书
创业计划书之宠物店
2019/09/19 职场文书