Python编程语言的35个与众不同之处(语言特征和使用技巧)


Posted in Python onJuly 07, 2014

一、Python介绍

从我开始学习Python时我就决定维护一个经常使用的“窍门”列表。不论何时当我看到一段让我觉得“酷,这样也行!”的代码时(在一个例子中、在StackOverflow、在开源码软件中,等等),我会尝试它直到理解它,然后把它添加到列表中。这篇文章是清理过列表的一部分。如果你是一个有经验的Python程序员,尽管你可能已经知道一些,但你仍能发现一些你不知道的。如果你是一个正在学习Python的C、C++或Java程序员,或者刚开始学习编程,那么你会像我一样发现它们中的很多非常有用。

每个窍门或语言特性只能通过实例来验证,无需过多解释。虽然我已尽力使例子清晰,但它们中的一些仍会看起来有些复杂,这取决于你的熟悉程度。所以如果看过例子后还不清楚的话,标题能够提供足够的信息让你通过Google获取详细的内容。

二、Python的语言特征

列表按难度排序,常用的语言特征和技巧放在前面。

1. 分拆

>>> a, b, c = 1, 2, 3

>>> a, b, c

(1, 2, 3)

>>> a, b, c = [1, 2, 3]

>>> a, b, c

(1, 2, 3)

>>> a, b, c = (2 * i + 1 for i in range(3))

>>> a, b, c

(1, 3, 5)

>>> a, (b, c), d = [1, (2, 3), 4]

>>> a

1

>>> b

2

>>> c

3

>>> d

4

2.交换变量分拆

>>> a, b = 1, 2

>>> a, b = b, a

>>> a, b

(2, 1)

3.拓展分拆 (Python 3下适用)

>>> a, *b, c = [1, 2, 3, 4, 5]

>>> a

1

>>> b

[2, 3, 4]

>>> c

5

4.负索引
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> a[-1]

10

>>> a[-3]

8

5.列表切片 (a[start:end])
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> a[2:8]

[2, 3, 4, 5, 6, 7]

6.使用负索引的列表切片
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> a[-4:-2]

[7, 8]

7.带步进值的列表切片 (a[start:end:step])
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> a[::2]

[0, 2, 4, 6, 8, 10]

>>> a[::3]

[0, 3, 6, 9]

>>> a[2:8:2]

[2, 4, 6]

8.负步进值得列表切片
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> a[::-1]

[10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

>>> a[::-2]

[10, 8, 6, 4, 2, 0]

9.列表切片赋值
>>> a = [1, 2, 3, 4, 5]

>>> a[2:3] = [0, 0]

>>> a

[1, 2, 0, 0, 4, 5]

>>> a[1:1] = [8, 9]

>>> a

[1, 8, 9, 2, 0, 0, 4, 5]

>>> a[1:-1] = []

>>> a

[1, 5]

10.命名切片 (slice(start, end, step))
>>> a = [0, 1, 2, 3, 4, 5]

>>> LASTTHREE = slice(-3, None)

>>> LASTTHREE

slice(-3, None, None)

>>> a[LASTTHREE]

[3, 4, 5]

11.zip打包解包列表和倍数
>>> a = [1, 2, 3]

>>> b = ['a', 'b', 'c']

>>> z = zip(a, b)

>>> z

[(1, 'a'), (2, 'b'), (3, 'c')]

>>> zip(*z)

[(1, 2, 3), ('a', 'b', 'c')]

12.使用zip合并相邻的列表项
>>> a = [1, 2, 3, 4, 5, 6]

>>> zip(*([iter(a)] * 2))

[(1, 2), (3, 4), (5, 6)]

 

>>> group_adjacent = lambda a, k: zip(*([iter(a)] * k))

>>> group_adjacent(a, 3)

[(1, 2, 3), (4, 5, 6)]

>>> group_adjacent(a, 2)

[(1, 2), (3, 4), (5, 6)]

>>> group_adjacent(a, 1)

[(1,), (2,), (3,), (4,), (5,), (6,)]

 

>>> zip(a[::2], a[1::2])

[(1, 2), (3, 4), (5, 6)]

 

>>> zip(a[::3], a[1::3], a[2::3])

[(1, 2, 3), (4, 5, 6)]

 

>>> group_adjacent = lambda a, k: zip(*(a[i::k] for i in range(k)))

>>> group_adjacent(a, 3)

[(1, 2, 3), (4, 5, 6)]

>>> group_adjacent(a, 2)

[(1, 2), (3, 4), (5, 6)]

>>> group_adjacent(a, 1)

[(1,), (2,), (3,), (4,), (5,), (6,)]

13.使用zip和iterators生成滑动窗口 (n -grams)
>>> from itertools import islice

>>> def n_grams(a, n):

...     z = (islice(a, i, None) for i in range(n))

...     return zip(*z)

...

>>> a = [1, 2, 3, 4, 5, 6]

>>> n_grams(a, 3)

[(1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6)]

>>> n_grams(a, 2)

[(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)]

>>> n_grams(a, 4)

[(1, 2, 3, 4), (2, 3, 4, 5), (3, 4, 5, 6)]

14.使用zip反转字典
>>> m = {'a': 1, 'b': 2, 'c': 3, 'd': 4}

>>> m.items()

[('a', 1), ('c', 3), ('b', 2), ('d', 4)]

>>> zip(m.values(), m.keys())

[(1, 'a'), (3, 'c'), (2, 'b'), (4, 'd')]

>>> mi = dict(zip(m.values(), m.keys()))

>>> mi

{1: 'a', 2: 'b', 3: 'c', 4: 'd'}

15.摊平列表:
>>> a = [[1, 2], [3, 4], [5, 6]]

>>> list(itertools.chain.from_iterable(a))

[1, 2, 3, 4, 5, 6]

 

>>> sum(a, [])

[1, 2, 3, 4, 5, 6]

 

>>> [x for l in a for x in l]

[1, 2, 3, 4, 5, 6]

 

>>> a = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]

>>> [x for l1 in a for l2 in l1 for x in l2]

[1, 2, 3, 4, 5, 6, 7, 8]

 

>>> a = [1, 2, [3, 4], [[5, 6], [7, 8]]]

>>> flatten = lambda x: [y for l in x for y in flatten(l)] if type(x) is list else [x]

>>> flatten(a)

[1, 2, 3, 4, 5, 6, 7, 8]

 

注意: 根据Python的文档,itertools.chain.from_iterable是首选。

16.生成器表达式

>>> g = (x ** 2 for x in xrange(10))

>>> next(g)

0

>>> next(g)

1

>>> next(g)

4

>>> next(g)

9

>>> sum(x ** 3 for x in xrange(10))

2025

>>> sum(x ** 3 for x in xrange(10) if x % 3 == 1)

408

17.迭代字典
>>> m = {x: x ** 2 for x in range(5)}

>>> m

{0: 0, 1: 1, 2: 4, 3: 9, 4: 16}

 

>>> m = {x: 'A' + str(x) for x in range(10)}

>>> m

{0: 'A0', 1: 'A1', 2: 'A2', 3: 'A3', 4: 'A4', 5: 'A5', 6: 'A6', 7: 'A7', 8: 'A8', 9: 'A9'}

18.通过迭代字典反转字典
>>> m = {'a': 1, 'b': 2, 'c': 3, 'd': 4}

>>> m

{'d': 4, 'a': 1, 'b': 2, 'c': 3}

>>> {v: k for k, v in m.items()}

{1: 'a', 2: 'b', 3: 'c', 4: 'd'}

19.命名序列 (collections.namedtuple)
>>> Point = collections.namedtuple('Point', ['x', 'y'])

>>> p = Point(x=1.0, y=2.0)

>>> p

Point(x=1.0, y=2.0)

>>> p.x

1.0

>>> p.y

2.0

20.命名列表的继承:
>>> class Point(collections.namedtuple('PointBase', ['x', 'y'])):

...     __slots__ = ()

...     def __add__(self, other):

...             return Point(x=self.x + other.x, y=self.y + other.y)

...

>>> p = Point(x=1.0, y=2.0)

>>> q = Point(x=2.0, y=3.0)

>>> p + q

Point(x=3.0, y=5.0)

21.集合及集合操作
>>> A = {1, 2, 3, 3}

>>> A

set([1, 2, 3])

>>> B = {3, 4, 5, 6, 7}

>>> B

set([3, 4, 5, 6, 7])

>>> A | B

set([1, 2, 3, 4, 5, 6, 7])

>>> A & B

set([3])

>>> A - B

set([1, 2])

>>> B - A

set([4, 5, 6, 7])

>>> A ^ B

set([1, 2, 4, 5, 6, 7])

>>> (A ^ B) == ((A - B) | (B - A))

True

22.多重集及其操作 (collections.Counter)
>>> A = collections.Counter([1, 2, 2])

>>> B = collections.Counter([2, 2, 3])

>>> A

Counter({2: 2, 1: 1})

>>> B

Counter({2: 2, 3: 1})

>>> A | B

Counter({2: 2, 1: 1, 3: 1})

>>> A & B

Counter({2: 2})

>>> A + B

Counter({2: 4, 1: 1, 3: 1})

>>> A - B

Counter({1: 1})

>>> B - A

Counter({3: 1})

23.迭代中最常见的元素 (collections.Counter)
>>> A = collections.Counter([1, 1, 2, 2, 3, 3, 3, 3, 4, 5, 6, 7])

>>> A

Counter({3: 4, 1: 2, 2: 2, 4: 1, 5: 1, 6: 1, 7: 1})

>>> A.most_common(1)

[(3, 4)]

>>> A.most_common(3)

[(3, 4), (1, 2), (2, 2)]

24.双端队列 (collections.deque)
>>> Q = collections.deque()

>>> Q.append(1)

>>> Q.appendleft(2)

>>> Q.extend([3, 4])

>>> Q.extendleft([5, 6])

>>> Q

deque([6, 5, 2, 1, 3, 4])

>>> Q.pop()

4

>>> Q.popleft()

6

>>> Q

deque([5, 2, 1, 3])

>>> Q.rotate(3)

>>> Q

deque([2, 1, 3, 5])

>>> Q.rotate(-3)

>>> Q

deque([5, 2, 1, 3])

25.有最大长度的双端队列 (collections.deque)
>>> last_three = collections.deque(maxlen=3)

>>> for i in xrange(10):

...     last_three.append(i)

...     print ', '.join(str(x) for x in last_three)

...

0

0, 1

0, 1, 2

1, 2, 3

2, 3, 4

3, 4, 5

4, 5, 6

5, 6, 7

6, 7, 8

7, 8, 9

26.字典排序 (collections.OrderedDict)
>>> m = dict((str(x), x) for x in range(10))

>>> print ', '.join(m.keys())

1, 0, 3, 2, 5, 4, 7, 6, 9, 8

>>> m = collections.OrderedDict((str(x), x) for x in range(10))

>>> print ', '.join(m.keys())

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

>>> m = collections.OrderedDict((str(x), x) for x in range(10, 0, -1))

>>> print ', '.join(m.keys())

10, 9, 8, 7, 6, 5, 4, 3, 2, 1

27.缺省字典 (collections.defaultdict)
>>> m = dict()

>>> m['a']

Traceback (most recent call last):

  File "<stdin>", line 1, in <module>

KeyError: 'a'

>>>

>>> m = collections.defaultdict(int)

>>> m['a']

0

>>> m['b']

0

>>> m = collections.defaultdict(str)

>>> m['a']

''

>>> m['b'] += 'a'

>>> m['b']

'a'

>>> m = collections.defaultdict(lambda: '[default value]')

>>> m['a']

'[default value]'

>>> m['b']

'[default value]'

28. 用缺省字典表示简单的树
>>> import json

>>> tree = lambda: collections.defaultdict(tree)

>>> root = tree()

>>> root['menu']['id'] = 'file'

>>> root['menu']['value'] = 'File'

>>> root['menu']['menuitems']['new']['value'] = 'New'

>>> root['menu']['menuitems']['new']['onclick'] = 'new();'

>>> root['menu']['menuitems']['open']['value'] = 'Open'

>>> root['menu']['menuitems']['open']['onclick'] = 'open();'

>>> root['menu']['menuitems']['close']['value'] = 'Close'

>>> root['menu']['menuitems']['close']['onclick'] = 'close();'

>>> print json.dumps(root, sort_keys=True, indent=4, separators=(',', ': '))

{

    "menu": {

        "id": "file",

        "menuitems": {

            "close": {

                "onclick": "close();",

                "value": "Close"

            },

            "new": {

                "onclick": "new();",

                "value": "New"

            },

            "open": {

                "onclick": "open();",

                "value": "Open"

            }

        },

        "value": "File"

    }

}

 

(到https://gist.github.com/hrldcpr/2012250查看详情)

29.映射对象到唯一的序列数 (collections.defaultdict)

>>> import itertools, collections

>>> value_to_numeric_map = collections.defaultdict(itertools.count().next)

>>> value_to_numeric_map['a']

0

>>> value_to_numeric_map['b']

1

>>> value_to_numeric_map['c']

2

>>> value_to_numeric_map['a']

0

>>> value_to_numeric_map['b']

1

30.最大最小元素 (heapq.nlargest和heapq.nsmallest)
>>> a = [random.randint(0, 100) for __ in xrange(100)]

>>> heapq.nsmallest(5, a)

[3, 3, 5, 6, 8]

>>> heapq.nlargest(5, a)

[100, 100, 99, 98, 98]

31.笛卡尔乘积 (itertools.product)
>>> for p in itertools.product([1, 2, 3], [4, 5]):

(1, 4)

(1, 5)

(2, 4)

(2, 5)

(3, 4)

(3, 5)

>>> for p in itertools.product([0, 1], repeat=4):

...     print ''.join(str(x) for x in p)

...

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

32.组合的组合和置换 (itertools.combinations 和 itertools.combinations_with_replacement)
>>> for c in itertools.combinations([1, 2, 3, 4, 5], 3):

...     print ''.join(str(x) for x in c)

...

123

124

125

134

135

145

234

235

245

345

>>> for c in itertools.combinations_with_replacement([1, 2, 3], 2):

...     print ''.join(str(x) for x in c)

...

11

12

13

22

23

33

33.排序 (itertools.permutations)
>>> for p in itertools.permutations([1, 2, 3, 4]):

...     print ''.join(str(x) for x in p)

...

1234

1243

1324

1342

1423

1432

2134

2143

2314

2341

2413

2431

3124

3142

3214

3241

3412

3421

4123

4132

4213

4231

4312

4321

34.链接的迭代 (itertools.chain)
>>> a = [1, 2, 3, 4]

>>> for p in itertools.chain(itertools.combinations(a, 2), itertools.combinations(a, 3)):

...     print p

...

(1, 2)

(1, 3)

(1, 4)

(2, 3)

(2, 4)

(3, 4)

(1, 2, 3)

(1, 2, 4)

(1, 3, 4)

(2, 3, 4)

>>> for subset in itertools.chain.from_iterable(itertools.combinations(a, n) for n in range(len(a) + 1))

...     print subset

...

()

(1,)

(2,)

(3,)

(4,)

(1, 2)

(1, 3)

(1, 4)

(2, 3)

(2, 4)

(3, 4)

(1, 2, 3)

(1, 2, 4)

(1, 3, 4)

(2, 3, 4)

(1, 2, 3, 4)

35.按给定值分组行 (itertools.groupby)
>>> from operator import itemgetter

>>> import itertools

>>> with open('contactlenses.csv', 'r') as infile:

...     data = [line.strip().split(',') for line in infile]

...

>>> data = data[1:]

>>> def print_data(rows):

...     print '\n'.join('\t'.join('{: <16}'.format(s) for s in row) for row in rows)

...

 

>>> print_data(data)

young               myope                   no                      reduced                 none

young               myope                   no                      normal                  soft

young               myope                   yes                     reduced                 none

young               myope                   yes                     normal                  hard

young               hypermetrope            no                      reduced                 none

young               hypermetrope            no                      normal                  soft

young               hypermetrope            yes                     reduced                 none

young               hypermetrope            yes                     normal                  hard

pre-presbyopic      myope                   no                      reduced                 none

pre-presbyopic      myope                   no                      normal                  soft

pre-presbyopic      myope                   yes                     reduced                 none

pre-presbyopic      myope                   yes                     normal                  hard

pre-presbyopic      hypermetrope            no                      reduced                 none

pre-presbyopic      hypermetrope            no                      normal                  soft

pre-presbyopic      hypermetrope            yes                     reduced                 none

pre-presbyopic      hypermetrope            yes                     normal                  none

presbyopic          myope                   no                      reduced                 none

presbyopic          myope                   no                      normal                  none

presbyopic          myope                   yes                     reduced                 none

presbyopic          myope                   yes                     normal                  hard

presbyopic          hypermetrope            no                      reduced                 none

presbyopic          hypermetrope            no                      normal                  soft

presbyopic          hypermetrope            yes                     reduced                 none

presbyopic          hypermetrope            yes                     normal                  none

 

>>> data.sort(key=itemgetter(-1))

>>> for value, group in itertools.groupby(data, lambda r: r[-1]):

...     print '-----------'

...     print 'Group: ' + value

...     print_data(group)

...

-----------

Group: hard

young               myope                   yes                     normal                  hard

young               hypermetrope            yes                     normal                  hard

pre-presbyopic      myope                   yes                     normal                  hard

presbyopic          myope                   yes                     normal                  hard

-----------

Group: none

young               myope                   no                      reduced                 none

young               myope                   yes                     reduced                 none

young               hypermetrope            no                      reduced                 none

young               hypermetrope            yes                     reduced                 none

pre-presbyopic      myope                   no                      reduced                 none

pre-presbyopic      myope                   yes                     reduced                 none

pre-presbyopic      hypermetrope            no                      reduced                 none

pre-presbyopic      hypermetrope            yes                     reduced                 none

pre-presbyopic      hypermetrope            yes                     normal                  none

presbyopic          myope                   no                      reduced                 none

presbyopic          myope                   no                      normal                  none

presbyopic          myope                   yes                     reduced                 none

presbyopic          hypermetrope            no                      reduced                 none

presbyopic          hypermetrope            yes                     reduced                 none

presbyopic          hypermetrope            yes                     normal                  none

-----------

Group: soft

young               myope                   no                      normal                  soft

young               hypermetrope            no                      normal                  soft

pre-presbyopic      myope                   no                      normal                  soft

pre-presbyopic      hypermetrope            no                      normal                  soft

presbyopic          hypermetrope            no                      normal 
Python 相关文章推荐
python解析中国天气网的天气数据
Mar 21 Python
利用一个简单的例子窥探CPython内核的运行机制
Mar 30 Python
给Python初学者的一些编程技巧
Apr 03 Python
Python中import机制详解
Nov 14 Python
Python实现打印实心和空心菱形
Nov 23 Python
浅谈python已知元素,获取元素索引(numpy,pandas)
Nov 26 Python
python 创建一维的0向量实例
Dec 02 Python
python操作docx写入内容,并控制文本的字体颜色
Feb 13 Python
python图形开发GUI库wxpython使用方法详解
Feb 14 Python
浅谈keras中的batch_dot,dot方法和TensorFlow的matmul
Jun 18 Python
Win10下配置tensorflow-gpu的详细教程(无VS2015/2017)
Jul 14 Python
基于PyTorch中view的用法说明
Mar 03 Python
python基于mysql实现的简单队列以及跨进程锁实例详解
Jul 07 #Python
python中使用urllib2获取http请求状态码的代码例子
Jul 07 #Python
Python中使用urllib2防止302跳转的代码例子
Jul 07 #Python
python中使用urllib2伪造HTTP报头的2个方法
Jul 07 #Python
python实现多线程采集的2个代码例子
Jul 07 #Python
Python程序员开发中常犯的10个错误
Jul 07 #Python
python采用requests库模拟登录和抓取数据的简单示例
Jul 05 #Python
You might like
PHP语法速查表
2006/12/06 PHP
解析百度搜索结果link?url=参数分析 (全)
2012/10/09 PHP
解析thinkphp中的导入文件标签
2013/06/20 PHP
php常用字符串String函数实例总结【转换,替换,计算,截取,加密】
2016/12/07 PHP
PHP迭代器接口Iterator用法分析
2017/12/28 PHP
Nigma vs AM BO3 第二场2.13
2021/03/10 DOTA
javascript是怎么继承的介绍
2012/01/05 Javascript
Jquery 数据选择插件Pickerbox使用介绍
2012/08/24 Javascript
随窗体滑动的小插件sticky源码
2013/06/21 Javascript
jsPDF导出pdf示例
2014/05/02 Javascript
jquery修改网页背景颜色通过css方法实现
2014/06/06 Javascript
浅析JS操作DOM的一些常用方法
2016/05/13 Javascript
jQuery中ScrollTo用法示例
2016/09/04 Javascript
Angularjs 依赖压缩及自定义过滤器写法
2017/02/04 Javascript
vue组件如何被其他项目引用
2017/04/13 Javascript
解决ant-design-vue中menu菜单无法默认展开的问题
2020/10/31 Javascript
Python实现的手机号归属地相关信息查询功能示例
2017/06/08 Python
基于Python对象引用、可变性和垃圾回收详解
2017/08/21 Python
Python使用Matplotlib实现雨点图动画效果的方法
2017/12/23 Python
python复制文件到指定目录的实例
2018/04/27 Python
对Python3 解析html的几种操作方式小结
2019/02/16 Python
Python字符串逆序的实现方法【一题多解】
2019/02/18 Python
python:动态路由的Flask程序代码
2019/11/22 Python
在pytorch中动态调整优化器的学习率方式
2020/06/24 Python
安装并免费使用Pycharm专业版(学生/教师)
2020/09/24 Python
Python os库常用操作代码汇总
2020/11/03 Python
HTML中meta标签及Keywords
2020/04/15 HTML / CSS
挪威户外活动服装和装备购物网站:Bergfreunde挪威
2016/10/20 全球购物
美国肌肉和力量商店:Muscle & Strength
2019/06/22 全球购物
介绍一下linux的文件权限
2012/02/15 面试题
保险公司开门红口号
2014/06/21 职场文书
2014年实习班主任工作总结
2014/11/08 职场文书
2015年学习部工作总结范文
2015/03/31 职场文书
劳动仲裁调解书
2015/05/20 职场文书
Nginx配置SSL证书出错解决方案
2021/03/31 Servers
PHP策略模式写法
2021/04/01 PHP