Python编程语言的35个与众不同之处(语言特征和使用技巧)


Posted in Python onJuly 07, 2014

一、Python介绍

从我开始学习Python时我就决定维护一个经常使用的“窍门”列表。不论何时当我看到一段让我觉得“酷,这样也行!”的代码时(在一个例子中、在StackOverflow、在开源码软件中,等等),我会尝试它直到理解它,然后把它添加到列表中。这篇文章是清理过列表的一部分。如果你是一个有经验的Python程序员,尽管你可能已经知道一些,但你仍能发现一些你不知道的。如果你是一个正在学习Python的C、C++或Java程序员,或者刚开始学习编程,那么你会像我一样发现它们中的很多非常有用。

每个窍门或语言特性只能通过实例来验证,无需过多解释。虽然我已尽力使例子清晰,但它们中的一些仍会看起来有些复杂,这取决于你的熟悉程度。所以如果看过例子后还不清楚的话,标题能够提供足够的信息让你通过Google获取详细的内容。

二、Python的语言特征

列表按难度排序,常用的语言特征和技巧放在前面。

1. 分拆

>>> a, b, c = 1, 2, 3

>>> a, b, c

(1, 2, 3)

>>> a, b, c = [1, 2, 3]

>>> a, b, c

(1, 2, 3)

>>> a, b, c = (2 * i + 1 for i in range(3))

>>> a, b, c

(1, 3, 5)

>>> a, (b, c), d = [1, (2, 3), 4]

>>> a

1

>>> b

2

>>> c

3

>>> d

4

2.交换变量分拆

>>> a, b = 1, 2

>>> a, b = b, a

>>> a, b

(2, 1)

3.拓展分拆 (Python 3下适用)

>>> a, *b, c = [1, 2, 3, 4, 5]

>>> a

1

>>> b

[2, 3, 4]

>>> c

5

4.负索引
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> a[-1]

10

>>> a[-3]

8

5.列表切片 (a[start:end])
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> a[2:8]

[2, 3, 4, 5, 6, 7]

6.使用负索引的列表切片
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> a[-4:-2]

[7, 8]

7.带步进值的列表切片 (a[start:end:step])
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> a[::2]

[0, 2, 4, 6, 8, 10]

>>> a[::3]

[0, 3, 6, 9]

>>> a[2:8:2]

[2, 4, 6]

8.负步进值得列表切片
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> a[::-1]

[10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

>>> a[::-2]

[10, 8, 6, 4, 2, 0]

9.列表切片赋值
>>> a = [1, 2, 3, 4, 5]

>>> a[2:3] = [0, 0]

>>> a

[1, 2, 0, 0, 4, 5]

>>> a[1:1] = [8, 9]

>>> a

[1, 8, 9, 2, 0, 0, 4, 5]

>>> a[1:-1] = []

>>> a

[1, 5]

10.命名切片 (slice(start, end, step))
>>> a = [0, 1, 2, 3, 4, 5]

>>> LASTTHREE = slice(-3, None)

>>> LASTTHREE

slice(-3, None, None)

>>> a[LASTTHREE]

[3, 4, 5]

11.zip打包解包列表和倍数
>>> a = [1, 2, 3]

>>> b = ['a', 'b', 'c']

>>> z = zip(a, b)

>>> z

[(1, 'a'), (2, 'b'), (3, 'c')]

>>> zip(*z)

[(1, 2, 3), ('a', 'b', 'c')]

12.使用zip合并相邻的列表项
>>> a = [1, 2, 3, 4, 5, 6]

>>> zip(*([iter(a)] * 2))

[(1, 2), (3, 4), (5, 6)]

 

>>> group_adjacent = lambda a, k: zip(*([iter(a)] * k))

>>> group_adjacent(a, 3)

[(1, 2, 3), (4, 5, 6)]

>>> group_adjacent(a, 2)

[(1, 2), (3, 4), (5, 6)]

>>> group_adjacent(a, 1)

[(1,), (2,), (3,), (4,), (5,), (6,)]

 

>>> zip(a[::2], a[1::2])

[(1, 2), (3, 4), (5, 6)]

 

>>> zip(a[::3], a[1::3], a[2::3])

[(1, 2, 3), (4, 5, 6)]

 

>>> group_adjacent = lambda a, k: zip(*(a[i::k] for i in range(k)))

>>> group_adjacent(a, 3)

[(1, 2, 3), (4, 5, 6)]

>>> group_adjacent(a, 2)

[(1, 2), (3, 4), (5, 6)]

>>> group_adjacent(a, 1)

[(1,), (2,), (3,), (4,), (5,), (6,)]

13.使用zip和iterators生成滑动窗口 (n -grams)
>>> from itertools import islice

>>> def n_grams(a, n):

...     z = (islice(a, i, None) for i in range(n))

...     return zip(*z)

...

>>> a = [1, 2, 3, 4, 5, 6]

>>> n_grams(a, 3)

[(1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6)]

>>> n_grams(a, 2)

[(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)]

>>> n_grams(a, 4)

[(1, 2, 3, 4), (2, 3, 4, 5), (3, 4, 5, 6)]

14.使用zip反转字典
>>> m = {'a': 1, 'b': 2, 'c': 3, 'd': 4}

>>> m.items()

[('a', 1), ('c', 3), ('b', 2), ('d', 4)]

>>> zip(m.values(), m.keys())

[(1, 'a'), (3, 'c'), (2, 'b'), (4, 'd')]

>>> mi = dict(zip(m.values(), m.keys()))

>>> mi

{1: 'a', 2: 'b', 3: 'c', 4: 'd'}

15.摊平列表:
>>> a = [[1, 2], [3, 4], [5, 6]]

>>> list(itertools.chain.from_iterable(a))

[1, 2, 3, 4, 5, 6]

 

>>> sum(a, [])

[1, 2, 3, 4, 5, 6]

 

>>> [x for l in a for x in l]

[1, 2, 3, 4, 5, 6]

 

>>> a = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]

>>> [x for l1 in a for l2 in l1 for x in l2]

[1, 2, 3, 4, 5, 6, 7, 8]

 

>>> a = [1, 2, [3, 4], [[5, 6], [7, 8]]]

>>> flatten = lambda x: [y for l in x for y in flatten(l)] if type(x) is list else [x]

>>> flatten(a)

[1, 2, 3, 4, 5, 6, 7, 8]

 

注意: 根据Python的文档,itertools.chain.from_iterable是首选。

16.生成器表达式

>>> g = (x ** 2 for x in xrange(10))

>>> next(g)

0

>>> next(g)

1

>>> next(g)

4

>>> next(g)

9

>>> sum(x ** 3 for x in xrange(10))

2025

>>> sum(x ** 3 for x in xrange(10) if x % 3 == 1)

408

17.迭代字典
>>> m = {x: x ** 2 for x in range(5)}

>>> m

{0: 0, 1: 1, 2: 4, 3: 9, 4: 16}

 

>>> m = {x: 'A' + str(x) for x in range(10)}

>>> m

{0: 'A0', 1: 'A1', 2: 'A2', 3: 'A3', 4: 'A4', 5: 'A5', 6: 'A6', 7: 'A7', 8: 'A8', 9: 'A9'}

18.通过迭代字典反转字典
>>> m = {'a': 1, 'b': 2, 'c': 3, 'd': 4}

>>> m

{'d': 4, 'a': 1, 'b': 2, 'c': 3}

>>> {v: k for k, v in m.items()}

{1: 'a', 2: 'b', 3: 'c', 4: 'd'}

19.命名序列 (collections.namedtuple)
>>> Point = collections.namedtuple('Point', ['x', 'y'])

>>> p = Point(x=1.0, y=2.0)

>>> p

Point(x=1.0, y=2.0)

>>> p.x

1.0

>>> p.y

2.0

20.命名列表的继承:
>>> class Point(collections.namedtuple('PointBase', ['x', 'y'])):

...     __slots__ = ()

...     def __add__(self, other):

...             return Point(x=self.x + other.x, y=self.y + other.y)

...

>>> p = Point(x=1.0, y=2.0)

>>> q = Point(x=2.0, y=3.0)

>>> p + q

Point(x=3.0, y=5.0)

21.集合及集合操作
>>> A = {1, 2, 3, 3}

>>> A

set([1, 2, 3])

>>> B = {3, 4, 5, 6, 7}

>>> B

set([3, 4, 5, 6, 7])

>>> A | B

set([1, 2, 3, 4, 5, 6, 7])

>>> A & B

set([3])

>>> A - B

set([1, 2])

>>> B - A

set([4, 5, 6, 7])

>>> A ^ B

set([1, 2, 4, 5, 6, 7])

>>> (A ^ B) == ((A - B) | (B - A))

True

22.多重集及其操作 (collections.Counter)
>>> A = collections.Counter([1, 2, 2])

>>> B = collections.Counter([2, 2, 3])

>>> A

Counter({2: 2, 1: 1})

>>> B

Counter({2: 2, 3: 1})

>>> A | B

Counter({2: 2, 1: 1, 3: 1})

>>> A & B

Counter({2: 2})

>>> A + B

Counter({2: 4, 1: 1, 3: 1})

>>> A - B

Counter({1: 1})

>>> B - A

Counter({3: 1})

23.迭代中最常见的元素 (collections.Counter)
>>> A = collections.Counter([1, 1, 2, 2, 3, 3, 3, 3, 4, 5, 6, 7])

>>> A

Counter({3: 4, 1: 2, 2: 2, 4: 1, 5: 1, 6: 1, 7: 1})

>>> A.most_common(1)

[(3, 4)]

>>> A.most_common(3)

[(3, 4), (1, 2), (2, 2)]

24.双端队列 (collections.deque)
>>> Q = collections.deque()

>>> Q.append(1)

>>> Q.appendleft(2)

>>> Q.extend([3, 4])

>>> Q.extendleft([5, 6])

>>> Q

deque([6, 5, 2, 1, 3, 4])

>>> Q.pop()

4

>>> Q.popleft()

6

>>> Q

deque([5, 2, 1, 3])

>>> Q.rotate(3)

>>> Q

deque([2, 1, 3, 5])

>>> Q.rotate(-3)

>>> Q

deque([5, 2, 1, 3])

25.有最大长度的双端队列 (collections.deque)
>>> last_three = collections.deque(maxlen=3)

>>> for i in xrange(10):

...     last_three.append(i)

...     print ', '.join(str(x) for x in last_three)

...

0

0, 1

0, 1, 2

1, 2, 3

2, 3, 4

3, 4, 5

4, 5, 6

5, 6, 7

6, 7, 8

7, 8, 9

26.字典排序 (collections.OrderedDict)
>>> m = dict((str(x), x) for x in range(10))

>>> print ', '.join(m.keys())

1, 0, 3, 2, 5, 4, 7, 6, 9, 8

>>> m = collections.OrderedDict((str(x), x) for x in range(10))

>>> print ', '.join(m.keys())

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

>>> m = collections.OrderedDict((str(x), x) for x in range(10, 0, -1))

>>> print ', '.join(m.keys())

10, 9, 8, 7, 6, 5, 4, 3, 2, 1

27.缺省字典 (collections.defaultdict)
>>> m = dict()

>>> m['a']

Traceback (most recent call last):

  File "<stdin>", line 1, in <module>

KeyError: 'a'

>>>

>>> m = collections.defaultdict(int)

>>> m['a']

0

>>> m['b']

0

>>> m = collections.defaultdict(str)

>>> m['a']

''

>>> m['b'] += 'a'

>>> m['b']

'a'

>>> m = collections.defaultdict(lambda: '[default value]')

>>> m['a']

'[default value]'

>>> m['b']

'[default value]'

28. 用缺省字典表示简单的树
>>> import json

>>> tree = lambda: collections.defaultdict(tree)

>>> root = tree()

>>> root['menu']['id'] = 'file'

>>> root['menu']['value'] = 'File'

>>> root['menu']['menuitems']['new']['value'] = 'New'

>>> root['menu']['menuitems']['new']['onclick'] = 'new();'

>>> root['menu']['menuitems']['open']['value'] = 'Open'

>>> root['menu']['menuitems']['open']['onclick'] = 'open();'

>>> root['menu']['menuitems']['close']['value'] = 'Close'

>>> root['menu']['menuitems']['close']['onclick'] = 'close();'

>>> print json.dumps(root, sort_keys=True, indent=4, separators=(',', ': '))

{

    "menu": {

        "id": "file",

        "menuitems": {

            "close": {

                "onclick": "close();",

                "value": "Close"

            },

            "new": {

                "onclick": "new();",

                "value": "New"

            },

            "open": {

                "onclick": "open();",

                "value": "Open"

            }

        },

        "value": "File"

    }

}

 

(到https://gist.github.com/hrldcpr/2012250查看详情)

29.映射对象到唯一的序列数 (collections.defaultdict)

>>> import itertools, collections

>>> value_to_numeric_map = collections.defaultdict(itertools.count().next)

>>> value_to_numeric_map['a']

0

>>> value_to_numeric_map['b']

1

>>> value_to_numeric_map['c']

2

>>> value_to_numeric_map['a']

0

>>> value_to_numeric_map['b']

1

30.最大最小元素 (heapq.nlargest和heapq.nsmallest)
>>> a = [random.randint(0, 100) for __ in xrange(100)]

>>> heapq.nsmallest(5, a)

[3, 3, 5, 6, 8]

>>> heapq.nlargest(5, a)

[100, 100, 99, 98, 98]

31.笛卡尔乘积 (itertools.product)
>>> for p in itertools.product([1, 2, 3], [4, 5]):

(1, 4)

(1, 5)

(2, 4)

(2, 5)

(3, 4)

(3, 5)

>>> for p in itertools.product([0, 1], repeat=4):

...     print ''.join(str(x) for x in p)

...

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

32.组合的组合和置换 (itertools.combinations 和 itertools.combinations_with_replacement)
>>> for c in itertools.combinations([1, 2, 3, 4, 5], 3):

...     print ''.join(str(x) for x in c)

...

123

124

125

134

135

145

234

235

245

345

>>> for c in itertools.combinations_with_replacement([1, 2, 3], 2):

...     print ''.join(str(x) for x in c)

...

11

12

13

22

23

33

33.排序 (itertools.permutations)
>>> for p in itertools.permutations([1, 2, 3, 4]):

...     print ''.join(str(x) for x in p)

...

1234

1243

1324

1342

1423

1432

2134

2143

2314

2341

2413

2431

3124

3142

3214

3241

3412

3421

4123

4132

4213

4231

4312

4321

34.链接的迭代 (itertools.chain)
>>> a = [1, 2, 3, 4]

>>> for p in itertools.chain(itertools.combinations(a, 2), itertools.combinations(a, 3)):

...     print p

...

(1, 2)

(1, 3)

(1, 4)

(2, 3)

(2, 4)

(3, 4)

(1, 2, 3)

(1, 2, 4)

(1, 3, 4)

(2, 3, 4)

>>> for subset in itertools.chain.from_iterable(itertools.combinations(a, n) for n in range(len(a) + 1))

...     print subset

...

()

(1,)

(2,)

(3,)

(4,)

(1, 2)

(1, 3)

(1, 4)

(2, 3)

(2, 4)

(3, 4)

(1, 2, 3)

(1, 2, 4)

(1, 3, 4)

(2, 3, 4)

(1, 2, 3, 4)

35.按给定值分组行 (itertools.groupby)
>>> from operator import itemgetter

>>> import itertools

>>> with open('contactlenses.csv', 'r') as infile:

...     data = [line.strip().split(',') for line in infile]

...

>>> data = data[1:]

>>> def print_data(rows):

...     print '\n'.join('\t'.join('{: <16}'.format(s) for s in row) for row in rows)

...

 

>>> print_data(data)

young               myope                   no                      reduced                 none

young               myope                   no                      normal                  soft

young               myope                   yes                     reduced                 none

young               myope                   yes                     normal                  hard

young               hypermetrope            no                      reduced                 none

young               hypermetrope            no                      normal                  soft

young               hypermetrope            yes                     reduced                 none

young               hypermetrope            yes                     normal                  hard

pre-presbyopic      myope                   no                      reduced                 none

pre-presbyopic      myope                   no                      normal                  soft

pre-presbyopic      myope                   yes                     reduced                 none

pre-presbyopic      myope                   yes                     normal                  hard

pre-presbyopic      hypermetrope            no                      reduced                 none

pre-presbyopic      hypermetrope            no                      normal                  soft

pre-presbyopic      hypermetrope            yes                     reduced                 none

pre-presbyopic      hypermetrope            yes                     normal                  none

presbyopic          myope                   no                      reduced                 none

presbyopic          myope                   no                      normal                  none

presbyopic          myope                   yes                     reduced                 none

presbyopic          myope                   yes                     normal                  hard

presbyopic          hypermetrope            no                      reduced                 none

presbyopic          hypermetrope            no                      normal                  soft

presbyopic          hypermetrope            yes                     reduced                 none

presbyopic          hypermetrope            yes                     normal                  none

 

>>> data.sort(key=itemgetter(-1))

>>> for value, group in itertools.groupby(data, lambda r: r[-1]):

...     print '-----------'

...     print 'Group: ' + value

...     print_data(group)

...

-----------

Group: hard

young               myope                   yes                     normal                  hard

young               hypermetrope            yes                     normal                  hard

pre-presbyopic      myope                   yes                     normal                  hard

presbyopic          myope                   yes                     normal                  hard

-----------

Group: none

young               myope                   no                      reduced                 none

young               myope                   yes                     reduced                 none

young               hypermetrope            no                      reduced                 none

young               hypermetrope            yes                     reduced                 none

pre-presbyopic      myope                   no                      reduced                 none

pre-presbyopic      myope                   yes                     reduced                 none

pre-presbyopic      hypermetrope            no                      reduced                 none

pre-presbyopic      hypermetrope            yes                     reduced                 none

pre-presbyopic      hypermetrope            yes                     normal                  none

presbyopic          myope                   no                      reduced                 none

presbyopic          myope                   no                      normal                  none

presbyopic          myope                   yes                     reduced                 none

presbyopic          hypermetrope            no                      reduced                 none

presbyopic          hypermetrope            yes                     reduced                 none

presbyopic          hypermetrope            yes                     normal                  none

-----------

Group: soft

young               myope                   no                      normal                  soft

young               hypermetrope            no                      normal                  soft

pre-presbyopic      myope                   no                      normal                  soft

pre-presbyopic      hypermetrope            no                      normal                  soft

presbyopic          hypermetrope            no                      normal 
Python 相关文章推荐
python获取糗百图片代码实例
Dec 18 Python
利用Python的Flask框架来构建一个简单的数字商品支付解决方案
Mar 31 Python
Python爬虫利用cookie实现模拟登陆实例详解
Jan 12 Python
详解 Python 与文件对象共事的实例
Sep 11 Python
PyQt5每天必学之组合框
Apr 20 Python
Django渲染Markdown文章目录的方法示例
Jan 02 Python
python 监听salt job状态,并任务数据推送到redis中的方法
Jan 14 Python
Python设计模式之外观模式实例详解
Jan 17 Python
pandas DataFrame 交集并集补集的实现
Jun 24 Python
python高斯分布概率密度函数的使用详解
Jul 10 Python
使用tensorflow实现VGG网络,训练mnist数据集方式
May 26 Python
Python进行特征提取的示例代码
Oct 15 Python
python基于mysql实现的简单队列以及跨进程锁实例详解
Jul 07 #Python
python中使用urllib2获取http请求状态码的代码例子
Jul 07 #Python
Python中使用urllib2防止302跳转的代码例子
Jul 07 #Python
python中使用urllib2伪造HTTP报头的2个方法
Jul 07 #Python
python实现多线程采集的2个代码例子
Jul 07 #Python
Python程序员开发中常犯的10个错误
Jul 07 #Python
python采用requests库模拟登录和抓取数据的简单示例
Jul 05 #Python
You might like
WordPress判断用户是否登录的代码
2011/03/17 PHP
rrmdir php中递归删除目录及目录下的文件
2011/05/15 PHP
使用PHP生成二维码的方法汇总
2015/07/22 PHP
PHP实现可添加水印与生成缩略图的图片处理工具类
2018/01/16 PHP
Yii框架学习笔记之session与cookie简单操作示例
2019/04/30 PHP
thinkPHP+LayUI 流加载实现功能
2019/09/27 PHP
用javascript实现改变TEXTAREA滚动条和按钮的颜色,以及怎样让滚动条变得扁平
2007/04/20 Javascript
图片连续滚动代码[兼容IE/firefox]
2009/06/11 Javascript
javascript算法学习(直接插入排序)
2011/04/12 Javascript
js判断背景图片是否加载成功使用img的width实现
2013/05/29 Javascript
Tab切换组件(选项卡功能)实例代码
2013/11/21 Javascript
HTML5 Shiv完美解决IE(IE6/IE7/IE8)不兼容HTML5标签的方法
2015/11/25 Javascript
Jquery左右滑动插件之实现超级炫酷动画效果附源码下载
2015/12/02 Javascript
JavaScript编写检测用户所使用的浏览器的代码示例
2016/05/05 Javascript
js原生跨域_用script标签的简单实现
2016/09/24 Javascript
探讨AngularJs中ui.route的简单应用
2016/11/16 Javascript
Vue监听数组变化源码解析
2017/03/09 Javascript
微信小程序中显示html格式内容的方法
2017/04/25 Javascript
vue 挂载路由到头部导航的方法
2017/11/13 Javascript
VUE2.0+ElementUI2.0表格el-table实现表头扩展el-tooltip
2018/11/30 Javascript
JS实现联想、自动补齐国家或地区名称的功能
2020/07/07 Javascript
vue移动端弹起蒙层滑动禁止底部滑动操作
2020/07/22 Javascript
python中的一些类型转换函数小结
2013/02/10 Python
python定时执行指定函数的方法
2015/05/27 Python
用python写爬虫简单吗
2020/07/28 Python
Html5 Canvas 实现一个“刮刮乐”游戏
2019/09/05 HTML / CSS
查环查孕证明
2014/01/10 职场文书
学校门卫管理制度
2014/01/30 职场文书
《小小竹排画中游》教学反思
2014/02/26 职场文书
商业门面租房协议书
2014/11/25 职场文书
乱世佳人观后感
2015/06/08 职场文书
Idea连接MySQL数据库出现中文乱码的问题
2021/04/14 MySQL
react合成事件与原生事件的相关理解
2021/05/13 Javascript
详解Go语言运用广度优先搜索走迷宫
2021/06/23 Python
win11无线投屏在哪设置? win11无线投屏功能的使用方法
2022/04/08 数码科技
i5-10400f处理相当于i7多少水平
2022/04/19 数码科技