Python matplotlib 利用随机函数生成变化图形


Posted in Python onApril 26, 2022

前言

综合前述的类、函数、matplotlib等,完成一个随机移动的过程(注意要确定移动的次数,比如10万次),每次行走都完全是随机的,没有明确的方向,结果是由一系列随机决策确定的,最后显示出每次移动的位置的图表。

思考:

1)每次走动多少个像素,由随机函数决定,每次移动方向也随机确定。由随机方向和随机像素共同移动位置大小和方向。

2)保证将每次移动的位置保存在列表中,供后面matplotlib调用,生成图表。

故而,可以分成两个文件,一个为rand_moving类,生成走动像素、方向,并记录相关数据,保存在数列中,另一个为绘图模块randdraw_visual ,调用matplotlib和rand_moving类,生成一个实例,并调用计算出的数列组生成图表。

一、rand_moving.py文件定义功能如下

1、初始化程序,设置一个参数,即移动的次数,初始化位置全部设置为0

2、随机生成x,y的方向和移动像素,并相乘,得到相对移动距离,即为每次移动的距离和方向,即需要4个随机函数来分别确定水平方向和垂直方向的 移动位置大小和方向,

3,计算出下一个位置,并进行保存到位置数列中,即每走完一步后,在屏幕中的绝对位置。

如下: 

from random import choice  #random是系统自带的随机函数模块

class Rand_moving(): #定义一个Rand_moving类
    def __init__(self,num_times=100000):  # 初始化,设置默认参数为10万,可以修改这个参数试试机器运行速度
        self.num_times = num_times  #移动次数
        
        self.x_values=[0]   # 设置两个数列,用来保存每一步的位置,初始位置为(0, 0),数列元素个数会一直增加到num_times,用来记录每一步的位置信息
        self.y_values=[0]    
        
    def fill_moving(self):  #定义一个函数,用来计算移动方向和距离,并计算需要保存的位置信息
        while len(self.x_values)<self.num_times:#循环不断运行,直到漫步包含所需数量的点num_times
           
            x_direction = choice([1,-1])       #x的移动方向,1向上,0不变,-1向下
            x_distance = choice([0,1,2,3,4,5]) #x的每次移动的像素,
            x_step = x_direction*x_distance    #移动方向乘以移动距离,以确定沿x移动的距离
            
            y_direction =  choice([1,-1])      #y的移动方向,1向上,0不变,-1向下
            y_distance = choice([0,1,2,3,4,5]) #y的每次移动的像素,
            y_step = y_direction*y_distance    #移动方向乘以移动距离,以确定沿y移动的距离
            
            #原地不变
            if x_step ==0 and y_step==0:  # x_step和 y_step都为零,则意味着原地踏步
                continue
            
            #计算下一个点的位置坐标x和y值,并分别保存到数列x_values和y_values中
            next_x = self.x_values[-1] + x_step  #self.x_values[-1]表示是数列最后一个值,初始为x_values=[0]
            next_y = self.y_values[-1] + y_step   
            
            self.x_values.append(next_x ) #将每次计算的next_x存入到数列x_values中
            self.y_values.append(next_y ) #将每次计算的next_y存入到数列y_values中

二、绘图模块

randdraw_visual.py

绘图模块randdraw_visual.py的功能如下:

1、调用matplotlib和rand_moving类;

2、rand_moving生成一个实例,并计算出的数列组生成图表;

3、用matplotlib中的方法生成图表

import matplotlib.pyplot as plt  #导入matplotlib模块

from rand_moving import *   #也可以用 import random_moving   注意使用过程中的细微差别 ,小写开头的rand_moving是文件(或称为模块,一个模块中可以有一个类,或多个类),大写开头Rand_moving是类。

rm = Rand_moving()  # 利用导入的 Rand_moving 类,创建一个实例rm,这里没有给定参数,默认是10万,可以修改为其他数据。
rm.fill_moving()    # 调用类的方法fill_moving() ,并生成随机数列,存入到x_values和y_values中,

plt.scatter(rm.x_values, rm.y_values,s=15)#调用实例rm中位置数列x_values和y_values生成图表
plt.show()

程序运行效果(注意,为了对比,程序中创建了3个实例,其中一个为默认值,另两个为50万和5万,如果一直没显示,请耐心等会儿!)

Python matplotlib 利用随机函数生成变化图形

上述三个实例处在同一图中,呈现不同颜色,如果只有一个实例,如何修改颜色?

入门(1)中,语句 plt.scatter(x_values, y_values, c=y_values, cmap=plt.cm.Blues,edgecolor='none', s=40) 是修改渐变色的,可偿试将randdraw_visual.py模块中进行如下修改:

plt.scatter(rm.x_values, rm.y_values,c=y_values, cmap=plt.cm.Reds,edgecolor='none',s=15)

注: c的参数是字符串,可以直接使用颜色的英文进行赋值,比如:c='yellow',见后面修改起点、终点颜色。

指定一个红色,一个蓝色,实际运行效果(有重复的地方,实例设置为蓝色在后面,将红色盖住):

Python matplotlib 利用随机函数生成变化图形

除些之外,还可以对特定的点进行设定,也就是在语句plt.scatter(rm.x_values, rm.y_values,c=y_values, cmap=plt.cm.Reds,edgecolor='none',s=15)之后,再多几个相关语句,并给定相关点坐标。

import matplotlib.pyplot as plt

from rand_moving import *   #也可以用import random_moving注意使用过程中的差别

rm = Rand_moving()  # 创建一个实例rm,这里没有给定参数,默认是10万,可以修改为其他数据。
rm.fill_moving()    # 调用类的方法fill_moving() ,并生成随机数列,存入到x_values和y_values中
plt.scatter(rm.x_values,rm.y_values,c=rm.y_values,cmap=plt.cm.Reds,edgecolor='none',s=15)
#调用实例rm中数列x_values和y_values生成图表#调用实例rm中数列x_values和y_values生成图表

new_rm = Rand_moving(500000)  # 创建一个实例new_rm,是50万次
new_rm.fill_moving()   
plt.scatter(new_rm.x_values,new_rm.y_values,c=new_rm.y_values, cmap=plt.cm.Blues,edgecolor='none',s=15)

# 重绘起点,终点
#因为两个实例的起点一样,只需一个起点即可
plt.scatter(rm.x_values[0], rm.y_values[0],c='yellow',edgecolor='none',s=100)   #设置起点,把s设置较大,以示区别
#两个实例终点不同,分别重绘终点位置 
plt.scatter(rm.x_values[-1], rm.y_values[-1],c='brown',edgecolor='none',s=100)  #设置实例rm的终点,思考为什么用[-1]
plt.scatter(new_rm.x_values[-1], new_rm.y_values[-1],c='pink',edgecolor='none',s=100) #设置实例new_rm的终点

plt.show()

实际运行效果:

Python matplotlib 利用随机函数生成变化图形

显示图表屏幕大小

图表适合屏幕大小能有效地将数据中的规律呈现出来,如果要调整屏幕大小,可调整matplotlib输出的尺寸

plt.figure(dpi=128,figsize=(12, 10))

函数 figure() 用于指定图表的宽度、高度、分辨率和背景色。

形参 figsize 指定一个元组

形参 dpi 向 figure() 传递该分辨率

注意:plt.figure(dpi=128,figsize=(12, 10))语句要在其他plt开始语句的前面,才能调整显示屏幕的大小。

import matplotlib.pyplot as plt

from rand_moving import *   #也可以用import random_moving注意使用过程中的差别
#调整屏幕大小
plt.figure(dpi=128,figsize=(12, 10))  #一开始就要定义显示的大小,当然,可以试一下,放到plt.show()之前其他位置的运行效果。

rm = Rand_moving()  # 创建一个实例rm,这里没有给定参数,默认是10万,可以修改为其他数据。
rm.fill_moving()    # 调用类的方法fill_moving() ,并生成随机数列,存入到x_values和y_values中
plt.scatter(rm.x_values,rm.y_values,c=rm.y_values,cmap=plt.cm.Reds,edgecolor='none',s=15)
#调用实例rm中数列x_values和y_values生成图表#调用实例rm中数列x_values和y_values生成图表

new_rm = Rand_moving(500000)  # 创建一个实例new_rm,是50万次
new_rm.fill_moving()   
plt.scatter(new_rm.x_values,new_rm.y_values,c=new_rm.y_values, cmap=plt.cm.Blues,edgecolor='none',s=15)

plt.show()

当然,还可以试一下他函数功能。 

是不是有点小小的成就感!

小结

请思考:

1、上述程序是否能进行优化(比如功能相同的)

2、创建三个3个实例,用了3个语句,能否建一个函数,只输入一个数n,就自动创建n个实例?同时,每个实例的num_times随机,(n比较大时,num_times应该比较小)

3、当实现上述功能后,程序运行,只输入一个参数(创建实例的个数),就会自动生成对应的num_times,并分别调用相关函数生成对应图表。

以上就是Python利用随机函数生成变化图形的详细内容!


Tags in this post...

Python 相关文章推荐
Python中的Numeric包和Numarray包使用教程
Apr 13 Python
python机器学习之神经网络(二)
Dec 20 Python
Python利用字典将两个通讯录文本合并为一个文本实例
Jan 16 Python
python筛选出两个文件中重复行的方法
May 31 Python
对python中Json与object转化的方法详解
Dec 31 Python
使用Python控制摄像头拍照并发邮件
Apr 23 Python
Python实现socket非阻塞通讯功能示例
Nov 06 Python
python socket 聊天室实例代码详解
Nov 14 Python
在Python中等距取出一个数组其中n个数的实现方式
Nov 27 Python
Python 如何实现数据库表结构同步
Sep 29 Python
Anaconda的安装与虚拟环境建立
Nov 18 Python
Python音乐爬虫完美绕过反爬
Aug 30 Python
方法汇总:Python 安装第三方库常用
Apr 26 #Python
Python 统计序列中元素的出现频度
Apr 26 #Python
Python matplotlib安装以及实现简单曲线的绘制
Python爬虫 简单介绍一下Xpath及使用
分享python函数常见关键字
Apr 26 #Python
python和Appium的移动端多设备自动化测试框架
Apr 26 #Python
Python查找算法的实现 (线性、二分,分块、插值查找算法)
You might like
PHP的FTP学习(二)[转自奥索]
2006/10/09 PHP
php利用curl抓取新浪微博内容示例
2014/04/27 PHP
PHP base64编码后解码乱码的解决办法
2014/06/19 PHP
PHP中遇到的时区问题解决方法
2015/07/23 PHP
php+MySQL实现登录时验证登录名和密码是否正确
2016/05/10 PHP
ECSHOP完美解决Deprecated: preg_replace()报错的问题
2016/05/17 PHP
js中eval详解
2012/03/30 Javascript
Js中setTimeout()和setInterval() 何时被调用执行的用法
2013/04/12 Javascript
关于JS中的闭包浅谈
2013/08/23 Javascript
NodeJs基本语法和类型
2015/02/13 NodeJs
js实现点击图片改变页面背景图的方法
2015/02/28 Javascript
jQuery实现当前页面标签高亮显示的方法
2015/03/10 Javascript
JS实现淘宝支付宝网站的控制台菜单效果
2015/09/28 Javascript
jQuery DOM节点的遍历方法小结
2017/08/15 jQuery
Bootstrap modal只加载一次数据的解决办法(推荐)
2017/11/24 Javascript
JS代码实现电脑配置检测功能
2018/03/21 Javascript
vue设置默认首页的操作
2020/08/12 Javascript
浅谈JavaScript节流和防抖函数
2020/08/25 Javascript
[14:56]教你分分钟做大人:巫医
2014/10/30 DOTA
[44:40]2018DOTA2亚洲邀请赛3月30日 小组赛A组Liquid VS OG
2018/03/31 DOTA
Python实现图片尺寸缩放脚本
2018/03/10 Python
python 解压pkl文件的方法
2018/10/25 Python
python3+PyQt5 数据库编程--增删改实例
2019/06/17 Python
详细介绍pandas的DataFrame的append方法使用
2019/07/31 Python
python实现简单银行管理系统
2019/10/25 Python
Python安装tar.gz格式文件方法详解
2020/01/19 Python
html5 迷宫游戏(碰撞检测)实例一
2013/07/25 HTML / CSS
编写用C语言实现的求n阶阶乘问题的递归算法
2014/10/21 面试题
大学自我鉴定
2013/12/20 职场文书
幼儿园大班新学期寄语
2014/01/18 职场文书
十八届三中全会宣传方案
2014/02/21 职场文书
2014两会学习心得:时代的发展
2014/03/17 职场文书
大学新生军训自我鉴定
2014/09/18 职场文书
重阳节演讲稿:尊敬帮助老人 弘扬传统美德
2014/09/25 职场文书
七年级作文之关于奶奶
2019/10/29 职场文书
MySQL事务的ACID特性以及并发问题方案
2022/07/15 MySQL