利用Python批量识别电子账单数据的方法


Posted in Python onFebruary 08, 2021

一、前言

有一定数量类似如下截图所示的账单,利用 Python 批量识别电子账单数据,并将数据保存到Excel。

利用Python批量识别电子账单数据的方法

百度智能云接口
打开https://cloud.baidu.com/,如未注册请先注册,然后登录点击管理控制台,点击左侧产品服务→人工智能→文字识别,点击创建应用,输入应用名称如Baidu_OCR,选择用途如学习办公,最后进行简单应用描述,即可点击立即创建。会出现应用列表,包括AppID、API Key、Secret Key等信息,这些稍后会用到。

利用Python批量识别电子账单数据的方法

利用Python批量识别电子账单数据的方法

二、调用Baidu aip识别

首先需要安装百度的接口,命令行输入如下:

pip install baidu-aip -i http://pypi.douban.com/simple --trusted-host pypi.douban.com

查看 Python 的 SDK 文档:

利用Python批量识别电子账单数据的方法

利用Python批量识别电子账单数据的方法

AipOcr是 OCR 的 Python SDK 客户端,为使用 OCR 的开发人员提供了一系列的交互方法。参考如下代码新建一个AipOcr:

from aip import AipOcr

""" 你的 APPID AK SK """
APP_ID = '你的 App ID'
API_KEY = '你的 Api Key'
SECRET_KEY = '你的 Secret Key'

client = AipOcr(APP_ID, API_KEY, SECRET_KEY)

用户向服务请求识别某张图中的所有文字

""" 读取图片 """
def get_file_content(filePath):
 with open(filePath, 'rb') as fp:
  return fp.read()

image = get_file_content('example.jpg')

""" 调用通用文字识别, 图片参数为本地图片 """
client.basicGeneral(image)
""" 调用通用文字识别(高精度版) 图片参数为本地图片 """
client.basicAccurate(image)

识别出如下图片中的文字,示例如下:

利用Python批量识别电子账单数据的方法

from aip import AipOcr

# """ 改成你的 百度云服务的 ID AK SK """
APP_ID = '18690701'
API_KEY = 'QFaTVXvZdPrR05dNlR5I49xA'
SECRET_KEY = '*******************************'
client = AipOcr(APP_ID, API_KEY, SECRET_KEY)

def get_file_content(filePath):
 with open(filePath, 'rb') as fp:
  return fp.read()

image = get_file_content('example.jpg')
# 调用通用文字识别, 图片参数为本地图片
result = client.basicGeneral(image)
print(result)
# 提取识别结果
info = '\n'.join([i['words'] for i in result['words_result']])
print(info)

结果如下:

利用Python批量识别电子账单数据的方法

三、批量识别电子账单

获取所有待识别的电子账单图像

from pathlib import Path

# 换成你放图片的路径
p = Path(r'D:\test\test_img')
# 得到所有文件夹下 .jpg 图片
file = p.glob('**/*.jpg')
for img_file in file:
 print(type(img_file)) # <class 'pathlib.WindowsPath'> 转成str
 img_file = str(img_file)
 print(img_file)

为了增加识别准确率,将账单上要提取的数据区域分割出来,再调用Baidu aip识别。

利用Python批量识别电子账单数据的方法

from pathlib import Path
import cv2 as cv
from aip import AipOcr
from time import sleep

APP_ID = '18690701'
API_KEY = 'QFaTVXvZdPrR05dNlR5I49xA'
SECRET_KEY = '**********************************'
client = AipOcr(APP_ID, API_KEY, SECRET_KEY)

""" 读取图片 """
def get_file_content(filePath):
 with open(filePath, 'rb') as fp:
  return fp.read()

def identity(num):
 result_list = []
 for i in range(num):
  image = get_file_content('img{}.jpg'.format(i))
  """ 调用通用文字识别, 图片参数为本地图片 """
  result = client.basicGeneral(image)
  print(result)
  sleep(2)
  # 识别结果
  info = ''.join([i['words'] for i in result['words_result']])
  result_list.append(info)
 print(result_list)

src = cv.imread(r'D:\test\test_img\001.jpg')
src = cv.resize(src, None, fx=0.5, fy=0.5)
# print(src.shape)
img = src[280:850, 10:580]  # 截取图片 高 宽
money = img[70:130, 150:450]  # 支出 收入金额
goods = img[280:330, 160:560]  # 商品
time_1 = img[380:425, 160:292] # 支付时间 年月日
time_2 = img[380:425, 160:390] # 支付时间 完整
way = img[430:475, 160:560]  # 支付方式
num_1 = img[480:520, 160:560]  # 交易单号
num_2 = img[525:570, 160:560]  # 商户单号
img_list = [money, goods, time_1, time_2, way, num_1, num_2]
for index_, item in enumerate(img_list):
 cv.imwrite(f'img{index_}.jpg', item)

identity(len(img_list))

利用Python批量识别电子账单数据的方法

发现调用 client.basicGeneral(image),通用文字识别,-5.90识别成590,而图像里支付时间年月日 时分秒之间间隔小,识别出来都在一起了,需要把支付时间的年月日 时分秒分别分割出来识别,调用 client.basicAccurate(image),通用文字识别(高精度版)。

完整实现如下:

"""
@File :test_01.py
@Author :叶庭云
@CSDN :https://yetingyun.blog.csdn.net/
"""
from aip import AipOcr
from pathlib import Path
import cv2 as cv
from time import sleep
import openpyxl


wb = openpyxl.Workbook()
sheet = wb.active
sheet.append(['消费', '商品', '支付时间', '支付方式', '交易单号', '商品单号'])
# """ 改成你的 百度云服务的 ID AK SK """
APP_ID = '18690701'
API_KEY = 'QFaTVXvZdPrR05dNlR5I49xA'
SECRET_KEY = '*******************************'

client = AipOcr(APP_ID, API_KEY, SECRET_KEY)

""" 读取图片 """
def get_file_content(filePath):
 with open(filePath, 'rb') as fp:
  return fp.read()


def identity(num):
 result_list = []
 for i in range(num):
  image = get_file_content('img{}.jpg'.format(i))
  """ 调用通用文字识别, 图片参数为本地图片 """
  result = client.basicAccurate(image)
  print(result)
  sleep(1)
  # 识别结果
  info = ''.join([i['words'] for i in result['words_result']])
  result_list.append(info)

 result_list[2] = result_list[2] + ' ' + result_list[3]
 result_list.pop(3)
 print(result_list)
 sheet.append(result_list)


# 换成你放图片的路径
p = Path(r'D:\test\test_img')
# 得到所有文件夹下 .jpg 图片
file = p.glob('**/*.jpg')
for img_file in file:
 img_file = str(img_file)
 src = cv.imread(r'{}'.format(img_file))
 src = cv.resize(src, None, fx=0.5, fy=0.5)
 # print(src.shape)
 img = src[280:850, 10:580]  # 截取图片 高、宽范围
 money = img[70:130, 150:450]  # 支出金额
 goods = img[280:330, 160:560]  # 商品
 time_1 = img[380:425, 160:292] # 支付时间 年月日
 time_2 = img[380:425, 290:390] # 支付时间 时分秒
 way = img[430:475, 160:560]  # 支付方式
 num_1 = img[480:520, 160:560]  # 交易单号
 num_2 = img[525:570, 160:560]  # 商户单号
 img_list = [money, goods, time_1, time_2, way, num_1, num_2]
 for index_, item in enumerate(img_list):
  cv.imwrite(f'img{index_}.jpg', item)
 identity(len(img_list))
 # cv.imshow('img', img)
 # cv.imshow('goods', time_2)
 # cv.waitKey(0)

wb.save(filename='识别账单结果.xlsx')

结果如下:

利用Python批量识别电子账单数据的方法

利用Python批量识别电子账单数据的方法

识别结果还不错,成功利用 Python 批量识别电子账单数据,并将数据保存到Excel。

到此这篇关于利用Python批量识别电子账单数据的文章就介绍到这了,更多相关Python识别电子账单内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python基于twisted实现简单的web服务器
Sep 29 Python
Python3实现的画图及加载图片动画效果示例
Jan 19 Python
浅谈使用Python内置函数getattr实现分发模式
Jan 22 Python
python合并同类型excel表格的方法
Apr 01 Python
通过Python 接口使用OpenCV的方法
Apr 02 Python
Python实现中一次读取多个值的方法
Apr 22 Python
Python实现读取txt文件并转换为excel的方法示例
May 17 Python
Python中staticmethod和classmethod的作用与区别
Oct 11 Python
python hbase读取数据发送kafka的方法
Dec 27 Python
Python-接口开发入门解析
Aug 01 Python
pytorch 模型可视化的例子
Aug 17 Python
Python Websocket服务端通信的使用示例
Feb 25 Python
Python命令行参数argv和argparse该如何使用
Feb 08 #Python
python 实现Requests发送带cookies的请求
Feb 08 #Python
PyCharm2020.3.2安装超详细教程
Feb 08 #Python
python 30行代码实现蚂蚁森林自动偷能量
Feb 08 #Python
如何用Python编写一个电子考勤系统
Feb 08 #Python
python编程的核心知识点总结
Feb 08 #Python
python上下文管理器异常问题解决方法
Feb 07 #Python
You might like
德生1994机评
2021/03/02 无线电
php中mysql模块部分功能的简单封装
2011/09/30 PHP
神盾加密解密教程(一)PHP变量可用字符
2014/05/28 PHP
WordPress特定文章对搜索引擎隐藏或只允许搜索引擎查看
2015/12/31 PHP
基于PHP实现短信验证码接口(容联运通讯)
2016/09/06 PHP
laradock环境docker-compose操作详解
2019/07/29 PHP
Laravel获取所有的数据库表及结构的方法
2019/10/10 PHP
js实现全国省份城市级联下拉菜单效果代码
2015/09/07 Javascript
实例详解JSON数据格式及json格式数据域字符串相互转换
2016/01/07 Javascript
使用Angular.js实现简单的购物车功能
2016/11/21 Javascript
JS笛卡尔积算法与多重数组笛卡尔积实现方法示例
2017/12/01 Javascript
详细分析JS函数去抖和节流
2017/12/05 Javascript
jquery根据name取得select选中的值实例(超简单)
2018/01/25 jQuery
微信小程序switch开关选择器使用详解
2018/01/31 Javascript
三分钟学会用ES7中的Async/Await进行异步编程
2018/06/14 Javascript
在 Angular6 中使用 HTTP 请求服务端数据的步骤详解
2018/08/06 Javascript
微信小程序局部刷新触发整页刷新效果的实现代码
2018/11/21 Javascript
Node.js 如何利用异步提升任务处理速度
2019/01/07 Javascript
基于layui轮播图满屏是高度自适应的解决方法
2019/09/16 Javascript
Python 的描述符 descriptor详解
2016/02/27 Python
python3中dict(字典)的使用方法示例
2017/03/22 Python
对Python 内建函数和保留字详解
2018/10/15 Python
Python 实现两个服务器之间文件的上传方法
2019/02/13 Python
pyqt实现.ui文件批量转换为对应.py文件脚本
2019/06/19 Python
Python编写通讯录通过数据库存储实现模糊查询功能
2019/07/18 Python
Pandas DataFrame中的tuple元素遍历的实现
2019/10/23 Python
基于python3抓取pinpoint应用信息入库
2020/01/08 Python
利用Python实现斐波那契数列的方法实例
2020/07/26 Python
食堂标语大全
2014/06/11 职场文书
离婚协议书怎么写
2014/09/12 职场文书
2014年终工作总结范本
2014/12/15 职场文书
春秋淹城导游词
2015/02/11 职场文书
学生退学证明
2015/06/23 职场文书
学校证明范文
2015/06/24 职场文书
初中军训感想
2015/08/07 职场文书
MySQL数据库10秒内插入百万条数据的实现
2021/11/01 MySQL