浅谈Python3识别判断图片主要颜色并和颜色库进行对比的方法


Posted in Python onOctober 25, 2019

【更新】主要提供两种方案:

方案一:(参考网上代码,感觉实用性不是很强)使用PIL截取图像,然后将RGB转为HSV进行判断,统计判断颜色,最后输出RGB值

方案二:使用opencv库函数进行处理。(效果不错)

1、将图片颜色转为hsv,
2、使用cv2.inRange()函数进行背景颜色过滤
3、将过滤后的颜色进行二值化处理
4、进行形态学腐蚀膨胀,cv2.dilate()
5、统计白色区域面积

详解:方案一:

转载出处:3water.com/article/62526.htm

项目实际需要,对识别出来的车车需要标记颜色,因此采用方案如下:

1、通过import PIL.ImageGrab as ImageGrab 将识别出来的汽车矩形框裁剪出来

img_color=image.crop((left,right,top,bottom))

2、将裁剪出来的image进行颜色图像识别

RGB和hsv中间的转换关系,网上很多,我也没有具体去研究如何转换的,能用就行

附上测试,封装成函数方法:

import colorsys
import PIL.Image as Image
 
def get_dominant_color(image):
  max_score = 0.0001
  dominant_color = None
  for count,(r,g,b) in image.getcolors(image.size[0]*image.size[1]):
    # 转为HSV标准
    saturation = colorsys.rgb_to_hsv(r/255.0, g/255.0, b/255.0)[1]
    y = min(abs(r*2104+g*4130+b*802+4096+131072)>>13,235)
    y = (y-16.0)/(235-16)
 
    #忽略高亮色
    if y > 0.9:
      continue
    score = (saturation+0.1)*count
    if score > max_score:
      max_score = score
      dominant_color = (r,g,b)
  return dominant_color
 
 
if __name__ == '__main__':
  image = Image.open('test.jpg')
  image = image.convert('RGB')
  print(get_dominant_color(image))

测试图

浅谈Python3识别判断图片主要颜色并和颜色库进行对比的方法

结果

浅谈Python3识别判断图片主要颜色并和颜色库进行对比的方法

在这个网上查询RGB数值对应的颜色

浅谈Python3识别判断图片主要颜色并和颜色库进行对比的方法

方案二:opencv计算机视觉库函数处理

1、定义HSV颜色字典,参考网上HSV颜色分类

浅谈Python3识别判断图片主要颜色并和颜色库进行对比的方法

代码如下:

import numpy as np
import collections
 
#定义字典存放颜色分量上下限
#例如:{颜色: [min分量, max分量]}
#{'red': [array([160, 43, 46]), array([179, 255, 255])]}
 
def getColorList():
  dict = collections.defaultdict(list)
 
  # 黑色
  lower_black = np.array([0, 0, 0])
  upper_black = np.array([180, 255, 46])
  color_list = []
  color_list.append(lower_black)
  color_list.append(upper_black)
  dict['black'] = color_list
 
  # #灰色
  # lower_gray = np.array([0, 0, 46])
  # upper_gray = np.array([180, 43, 220])
  # color_list = []
  # color_list.append(lower_gray)
  # color_list.append(upper_gray)
  # dict['gray']=color_list
 
  # 白色
  lower_white = np.array([0, 0, 221])
  upper_white = np.array([180, 30, 255])
  color_list = []
  color_list.append(lower_white)
  color_list.append(upper_white)
  dict['white'] = color_list
 
  #红色
  lower_red = np.array([156, 43, 46])
  upper_red = np.array([180, 255, 255])
  color_list = []
  color_list.append(lower_red)
  color_list.append(upper_red)
  dict['red']=color_list
 
  # 红色2
  lower_red = np.array([0, 43, 46])
  upper_red = np.array([10, 255, 255])
  color_list = []
  color_list.append(lower_red)
  color_list.append(upper_red)
  dict['red2'] = color_list
 
  #橙色
  lower_orange = np.array([11, 43, 46])
  upper_orange = np.array([25, 255, 255])
  color_list = []
  color_list.append(lower_orange)
  color_list.append(upper_orange)
  dict['orange'] = color_list
 
  #黄色
  lower_yellow = np.array([26, 43, 46])
  upper_yellow = np.array([34, 255, 255])
  color_list = []
  color_list.append(lower_yellow)
  color_list.append(upper_yellow)
  dict['yellow'] = color_list
 
  #绿色
  lower_green = np.array([35, 43, 46])
  upper_green = np.array([77, 255, 255])
  color_list = []
  color_list.append(lower_green)
  color_list.append(upper_green)
  dict['green'] = color_list
 
  #青色
  lower_cyan = np.array([78, 43, 46])
  upper_cyan = np.array([99, 255, 255])
  color_list = []
  color_list.append(lower_cyan)
  color_list.append(upper_cyan)
  dict['cyan'] = color_list
 
  #蓝色
  lower_blue = np.array([100, 43, 46])
  upper_blue = np.array([124, 255, 255])
  color_list = []
  color_list.append(lower_blue)
  color_list.append(upper_blue)
  dict['blue'] = color_list
 
  # 紫色
  lower_purple = np.array([125, 43, 46])
  upper_purple = np.array([155, 255, 255])
  color_list = []
  color_list.append(lower_purple)
  color_list.append(upper_purple)
  dict['purple'] = color_list
 
  return dict
 
 
if __name__ == '__main__':
  color_dict = getColorList()
  print(color_dict)
 
  num = len(color_dict)
  print('num=',num)
 
  for d in color_dict:
    print('key=',d)
    print('value=',color_dict[d][1])

2、颜色识别

import cv2
import numpy as np
import colorList
 
filename='car04.jpg'
 
#处理图片
def get_color(frame):
  print('go in get_color')
  hsv = cv2.cvtColor(frame,cv2.COLOR_BGR2HSV)
  maxsum = -100
  color = None
  color_dict = colorList.getColorList()
  for d in color_dict:
    mask = cv2.inRange(hsv,color_dict[d][0],color_dict[d][1])
    cv2.imwrite(d+'.jpg',mask)
    binary = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)[1]
    binary = cv2.dilate(binary,None,iterations=2)
    img, cnts, hiera = cv2.findContours(binary.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
    sum = 0
    for c in cnts:
      sum+=cv2.contourArea(c)
    if sum > maxsum :
      maxsum = sum
      color = d
 
  return color
 
 
if __name__ == '__main__':
  frame = cv2.imread(filename)
  print(get_color(frame))

3、结果

原始图像(网上找的测试图):

浅谈Python3识别判断图片主要颜色并和颜色库进行对比的方法

1)、使用cv2.inRange()函数过滤背景后图片如下:

浅谈Python3识别判断图片主要颜色并和颜色库进行对比的方法

2)、可见使用白色分量过滤背景后,出现车辆的轮廓,因此,能够计算白色区域的面积,最大的则为该物体颜色

浅谈Python3识别判断图片主要颜色并和颜色库进行对比的方法

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
bpython 功能强大的Python shell
Feb 16 Python
python中map()与zip()操作方法
Feb 27 Python
Python装饰器用法实例总结
Feb 07 Python
Python 内置函数进制转换的用法(十进制转二进制、八进制、十六进制)
Apr 30 Python
python抽取指定url页面的title方法
May 11 Python
Python3用tkinter和PIL实现看图工具
Jun 21 Python
pytorch 数据集图片显示方法
Jul 26 Python
python实现文件助手中查看微信撤回消息
Apr 29 Python
flask框架jinja2模板与模板继承实例分析
Aug 01 Python
python实现梯度下降法
Mar 24 Python
Python如何进行时间处理
Aug 06 Python
微信小程序调用python模型
Apr 21 Python
Python二元赋值实用技巧解析
Oct 25 #Python
Python字典常见操作实例小结【定义、添加、删除、遍历】
Oct 25 #Python
基于Python实现签到脚本过程解析
Oct 25 #Python
python实现大学人员管理系统
Oct 25 #Python
Python队列、进程间通信、线程案例
Oct 25 #Python
python银行系统实现源码
Oct 25 #Python
python Event事件、进程池与线程池、协程解析
Oct 25 #Python
You might like
用PHP产生动态的影像图
2006/10/09 PHP
PHP导出MySQL数据到Excel文件(fputcsv)
2011/07/03 PHP
PHP setcookie设置Cookie用法(及设置无效的问题)
2011/07/13 PHP
Thinkphp 3.2框架使用Redis的方法详解
2019/10/24 PHP
TNC vs IO BO3 第二场2.13
2021/03/10 DOTA
return false;和e.preventDefault();的区别
2010/07/11 Javascript
js中parseInt函数浅谈
2013/07/31 Javascript
JS图片切换的具体方法(带缩略图版)
2013/11/12 Javascript
jQuery.holdReady()使用方法
2014/05/20 Javascript
JS实现的网页倒计时数字时钟效果
2015/03/02 Javascript
js实现表单提交后不重新刷新当前页面
2016/11/30 Javascript
Bootstrap + AngularJS 实现简单的数据过滤字符查找功能
2017/07/27 Javascript
关于vue-router的beforeEach无限循环的问题解决
2017/09/09 Javascript
使用node搭建自动发图文微博机器人的方法
2019/03/22 Javascript
webpack+vue.js构建前端工程化的详细教程
2020/05/10 Javascript
基于element-ui封装可搜索的懒加载tree组件的实现
2020/05/22 Javascript
WebPack工具运行原理及入门教程
2020/12/02 Javascript
[01:32]DOTA2 2015国际邀请赛中国区预选赛第四日战报
2015/05/29 DOTA
[45:38]DOTA2上海特级锦标赛主赛事日 - 1 胜者组第一轮#1Liquid VS Alliance第一局
2016/03/02 DOTA
python通过apply使用元祖和列表调用函数实例
2015/05/26 Python
python中pygame针对游戏窗口的显示方法实例分析(附源码)
2015/11/11 Python
Python3中正则模块re.compile、re.match及re.search函数用法详解
2018/06/11 Python
python读取Excel实例详解
2018/08/17 Python
python 获取url中的参数列表实例
2018/12/18 Python
python实现银联支付和支付宝支付接入
2019/05/07 Python
python中的global关键字的使用方法
2019/08/20 Python
python numpy 反转 reverse示例
2019/12/04 Python
利用python 读写csv文件
2020/09/10 Python
python爬虫实现爬取同一个网站的多页数据的实例讲解
2021/01/18 Python
大学生学习生活的自我评价
2013/11/01 职场文书
应届护士求职信范文
2014/01/26 职场文书
毕业证丢失证明范本
2014/09/20 职场文书
骨干教师申报材料
2014/12/17 职场文书
世界遗产的导游词
2015/02/13 职场文书
医务人员医德考评自我评价
2015/03/03 职场文书
TypeScript实用技巧 Nominal Typing名义类型详解
2022/09/23 Javascript