浅谈Python3识别判断图片主要颜色并和颜色库进行对比的方法


Posted in Python onOctober 25, 2019

【更新】主要提供两种方案:

方案一:(参考网上代码,感觉实用性不是很强)使用PIL截取图像,然后将RGB转为HSV进行判断,统计判断颜色,最后输出RGB值

方案二:使用opencv库函数进行处理。(效果不错)

1、将图片颜色转为hsv,
2、使用cv2.inRange()函数进行背景颜色过滤
3、将过滤后的颜色进行二值化处理
4、进行形态学腐蚀膨胀,cv2.dilate()
5、统计白色区域面积

详解:方案一:

转载出处:3water.com/article/62526.htm

项目实际需要,对识别出来的车车需要标记颜色,因此采用方案如下:

1、通过import PIL.ImageGrab as ImageGrab 将识别出来的汽车矩形框裁剪出来

img_color=image.crop((left,right,top,bottom))

2、将裁剪出来的image进行颜色图像识别

RGB和hsv中间的转换关系,网上很多,我也没有具体去研究如何转换的,能用就行

附上测试,封装成函数方法:

import colorsys
import PIL.Image as Image
 
def get_dominant_color(image):
  max_score = 0.0001
  dominant_color = None
  for count,(r,g,b) in image.getcolors(image.size[0]*image.size[1]):
    # 转为HSV标准
    saturation = colorsys.rgb_to_hsv(r/255.0, g/255.0, b/255.0)[1]
    y = min(abs(r*2104+g*4130+b*802+4096+131072)>>13,235)
    y = (y-16.0)/(235-16)
 
    #忽略高亮色
    if y > 0.9:
      continue
    score = (saturation+0.1)*count
    if score > max_score:
      max_score = score
      dominant_color = (r,g,b)
  return dominant_color
 
 
if __name__ == '__main__':
  image = Image.open('test.jpg')
  image = image.convert('RGB')
  print(get_dominant_color(image))

测试图

浅谈Python3识别判断图片主要颜色并和颜色库进行对比的方法

结果

浅谈Python3识别判断图片主要颜色并和颜色库进行对比的方法

在这个网上查询RGB数值对应的颜色

浅谈Python3识别判断图片主要颜色并和颜色库进行对比的方法

方案二:opencv计算机视觉库函数处理

1、定义HSV颜色字典,参考网上HSV颜色分类

浅谈Python3识别判断图片主要颜色并和颜色库进行对比的方法

代码如下:

import numpy as np
import collections
 
#定义字典存放颜色分量上下限
#例如:{颜色: [min分量, max分量]}
#{'red': [array([160, 43, 46]), array([179, 255, 255])]}
 
def getColorList():
  dict = collections.defaultdict(list)
 
  # 黑色
  lower_black = np.array([0, 0, 0])
  upper_black = np.array([180, 255, 46])
  color_list = []
  color_list.append(lower_black)
  color_list.append(upper_black)
  dict['black'] = color_list
 
  # #灰色
  # lower_gray = np.array([0, 0, 46])
  # upper_gray = np.array([180, 43, 220])
  # color_list = []
  # color_list.append(lower_gray)
  # color_list.append(upper_gray)
  # dict['gray']=color_list
 
  # 白色
  lower_white = np.array([0, 0, 221])
  upper_white = np.array([180, 30, 255])
  color_list = []
  color_list.append(lower_white)
  color_list.append(upper_white)
  dict['white'] = color_list
 
  #红色
  lower_red = np.array([156, 43, 46])
  upper_red = np.array([180, 255, 255])
  color_list = []
  color_list.append(lower_red)
  color_list.append(upper_red)
  dict['red']=color_list
 
  # 红色2
  lower_red = np.array([0, 43, 46])
  upper_red = np.array([10, 255, 255])
  color_list = []
  color_list.append(lower_red)
  color_list.append(upper_red)
  dict['red2'] = color_list
 
  #橙色
  lower_orange = np.array([11, 43, 46])
  upper_orange = np.array([25, 255, 255])
  color_list = []
  color_list.append(lower_orange)
  color_list.append(upper_orange)
  dict['orange'] = color_list
 
  #黄色
  lower_yellow = np.array([26, 43, 46])
  upper_yellow = np.array([34, 255, 255])
  color_list = []
  color_list.append(lower_yellow)
  color_list.append(upper_yellow)
  dict['yellow'] = color_list
 
  #绿色
  lower_green = np.array([35, 43, 46])
  upper_green = np.array([77, 255, 255])
  color_list = []
  color_list.append(lower_green)
  color_list.append(upper_green)
  dict['green'] = color_list
 
  #青色
  lower_cyan = np.array([78, 43, 46])
  upper_cyan = np.array([99, 255, 255])
  color_list = []
  color_list.append(lower_cyan)
  color_list.append(upper_cyan)
  dict['cyan'] = color_list
 
  #蓝色
  lower_blue = np.array([100, 43, 46])
  upper_blue = np.array([124, 255, 255])
  color_list = []
  color_list.append(lower_blue)
  color_list.append(upper_blue)
  dict['blue'] = color_list
 
  # 紫色
  lower_purple = np.array([125, 43, 46])
  upper_purple = np.array([155, 255, 255])
  color_list = []
  color_list.append(lower_purple)
  color_list.append(upper_purple)
  dict['purple'] = color_list
 
  return dict
 
 
if __name__ == '__main__':
  color_dict = getColorList()
  print(color_dict)
 
  num = len(color_dict)
  print('num=',num)
 
  for d in color_dict:
    print('key=',d)
    print('value=',color_dict[d][1])

2、颜色识别

import cv2
import numpy as np
import colorList
 
filename='car04.jpg'
 
#处理图片
def get_color(frame):
  print('go in get_color')
  hsv = cv2.cvtColor(frame,cv2.COLOR_BGR2HSV)
  maxsum = -100
  color = None
  color_dict = colorList.getColorList()
  for d in color_dict:
    mask = cv2.inRange(hsv,color_dict[d][0],color_dict[d][1])
    cv2.imwrite(d+'.jpg',mask)
    binary = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)[1]
    binary = cv2.dilate(binary,None,iterations=2)
    img, cnts, hiera = cv2.findContours(binary.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
    sum = 0
    for c in cnts:
      sum+=cv2.contourArea(c)
    if sum > maxsum :
      maxsum = sum
      color = d
 
  return color
 
 
if __name__ == '__main__':
  frame = cv2.imread(filename)
  print(get_color(frame))

3、结果

原始图像(网上找的测试图):

浅谈Python3识别判断图片主要颜色并和颜色库进行对比的方法

1)、使用cv2.inRange()函数过滤背景后图片如下:

浅谈Python3识别判断图片主要颜色并和颜色库进行对比的方法

2)、可见使用白色分量过滤背景后,出现车辆的轮廓,因此,能够计算白色区域的面积,最大的则为该物体颜色

浅谈Python3识别判断图片主要颜色并和颜色库进行对比的方法

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
用python实现面向对像的ASP程序实例
Nov 10 Python
在IIS服务器上以CGI方式运行Python脚本的教程
Apr 25 Python
Python向日志输出中添加上下文信息
May 24 Python
用python写个自动SSH登录远程服务器的小工具(实例)
Jun 17 Python
Python实现的堆排序算法原理与用法实例分析
Nov 22 Python
Python获取一个用户名的组ID过程解析
Sep 03 Python
Python使用Turtle库绘制一棵西兰花
Nov 23 Python
python实现差分隐私Laplace机制详解
Nov 25 Python
使用Python实现 学生学籍管理系统
Nov 26 Python
三步解决python PermissionError: [WinError 5]拒绝访问的情况
Apr 22 Python
keras 自定义loss model.add_loss的使用详解
Jun 22 Python
粗暴解决CUDA out of memory的问题
May 22 Python
Python二元赋值实用技巧解析
Oct 25 #Python
Python字典常见操作实例小结【定义、添加、删除、遍历】
Oct 25 #Python
基于Python实现签到脚本过程解析
Oct 25 #Python
python实现大学人员管理系统
Oct 25 #Python
Python队列、进程间通信、线程案例
Oct 25 #Python
python银行系统实现源码
Oct 25 #Python
python Event事件、进程池与线程池、协程解析
Oct 25 #Python
You might like
PHP Laravel中的Trait使用方法
2019/01/20 PHP
jQuery之字体大小的设置方法
2014/02/27 Javascript
JS判断、校验MAC地址的2个实例
2014/05/05 Javascript
nodejs中实现阻塞实例
2015/03/24 NodeJs
Yii2使用Bootbox插件实现自定义弹窗
2015/04/02 Javascript
JavaScript DOM事件(笔记)
2015/04/08 Javascript
使用C++为node.js写扩展模块
2015/04/22 Javascript
jquery+css实现的红色线条横向二级菜单效果
2015/08/22 Javascript
javascript基础语法学习笔记
2016/01/04 Javascript
hovertree插件实现二级树形菜单(简单实用)
2016/12/28 Javascript
js生成随机颜色方法代码分享(三种)
2016/12/29 Javascript
基于vue 实现token验证的实例代码
2017/12/14 Javascript
360doc网站不登录就无法复制内容的解决方法
2018/01/27 Javascript
jQuery 获取除某指定对象外的其他对象 ( :not() 与.not())
2018/10/10 jQuery
使用vue-cli脚手架工具搭建vue-webpack项目
2019/01/14 Javascript
JavaScript canvas仿代码流瀑布
2020/02/10 Javascript
利用python模拟sql语句对员工表格进行增删改查
2017/07/05 Python
Python网络编程详解
2017/10/31 Python
Pytorch入门之mnist分类实例
2018/04/14 Python
通过python顺序修改文件名字的方法
2018/07/11 Python
详解PANDAS 数据合并与重塑(join/merge篇)
2019/07/09 Python
Python django搭建layui提交表单,表格,图标的实例
2019/11/18 Python
python实现tail实时查看服务器日志示例
2019/12/24 Python
Python+Appium实现自动化测试的使用步骤
2020/03/24 Python
Python实现像awk一样分割字符串
2020/09/15 Python
Omio荷兰:预订火车、巴士和机票
2018/11/04 全球购物
工程造价自荐信
2013/10/09 职场文书
高级电工工作职责
2013/11/21 职场文书
会计电算化专业毕业生求职信范文
2013/12/10 职场文书
教育技术职业规划范文
2014/03/04 职场文书
租房协议书怎么写
2014/04/10 职场文书
党员承诺书范文
2014/05/19 职场文书
2014年检验员工作总结
2014/11/19 职场文书
新年晚会开场白
2015/05/29 职场文书
2015年秋季学校开学标语
2015/07/16 职场文书
婚宴来宾致辞
2015/07/28 职场文书