pytorch + visdom CNN处理自建图片数据集的方法


Posted in Python onJune 04, 2018

环境

系统:win10

cpu:i7-6700HQ

gpu:gtx965m

python : 3.6

pytorch :0.3

数据下载

来源自Sasank Chilamkurthy 的教程; 数据:下载链接。

下载后解压放到项目根目录:

pytorch + visdom CNN处理自建图片数据集的方法 

数据集为用来分类 蚂蚁和蜜蜂。有大约120个训练图像,每个类有75个验证图像。

数据导入

可以使用 torchvision.datasets.ImageFolder(root,transforms) 模块 可以将 图片转换为 tensor。

先定义transform:

ata_transforms = {
  'train': transforms.Compose([
    # 随机切成224x224 大小图片 统一图片格式
    transforms.RandomResizedCrop(224),
    # 图像翻转
    transforms.RandomHorizontalFlip(),
    # totensor 归一化(0,255) >> (0,1)  normalize  channel=(channel-mean)/std
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
  ]),
  "val" : transforms.Compose([
    # 图片大小缩放 统一图片格式
    transforms.Resize(256),
    # 以中心裁剪
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
  ])
}

导入,加载数据:

data_dir = './hymenoptera_data'
# trans data
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val']}
# load data
data_loaders = {x: DataLoader(image_datasets[x], batch_size=BATCH_SIZE, shuffle=True) for x in ['train', 'val']}

data_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes
print(data_sizes, class_names)

{'train': 244, 'val': 153} ['ants', 'bees']

训练集 244图片 , 测试集153图片 。

可视化部分图片看看,由于visdom支持tensor输入 ,不用换成numpy,直接用tensor计算即可 :

inputs, classes = next(iter(data_loaders['val']))

out = torchvision.utils.make_grid(inputs)
inp = torch.transpose(out, 0, 2)
mean = torch.FloatTensor([0.485, 0.456, 0.406])
std = torch.FloatTensor([0.229, 0.224, 0.225])
inp = std * inp + mean
inp = torch.transpose(inp, 0, 2)
viz.images(inp)

pytorch + visdom CNN处理自建图片数据集的方法

创建CNN

net 根据上一篇的处理cifar10的改了一下规格:

class CNN(nn.Module):
  def __init__(self, in_dim, n_class):
    super(CNN, self).__init__()
    self.cnn = nn.Sequential(
      nn.BatchNorm2d(in_dim),
      nn.ReLU(True),
      nn.Conv2d(in_dim, 16, 7), # 224 >> 218
      nn.BatchNorm2d(16),
      nn.ReLU(inplace=True),
      nn.MaxPool2d(2, 2), # 218 >> 109
      nn.ReLU(True),
      nn.Conv2d(16, 32, 5), # 105
      nn.BatchNorm2d(32),
      nn.ReLU(True),
      nn.Conv2d(32, 64, 5), # 101
      nn.BatchNorm2d(64),
      nn.ReLU(True),
      nn.Conv2d(64, 64, 3, 1, 1),
      nn.BatchNorm2d(64),
      nn.ReLU(True),
      nn.MaxPool2d(2, 2), # 101 >> 50
      nn.Conv2d(64, 128, 3, 1, 1), #
      nn.BatchNorm2d(128),
      nn.ReLU(True),
      nn.MaxPool2d(3), # 50 >> 16
    )
    self.fc = nn.Sequential(
      nn.Linear(128*16*16, 120),
      nn.BatchNorm1d(120),
      nn.ReLU(True),
      nn.Linear(120, n_class))
  def forward(self, x):
    out = self.cnn(x)
    out = self.fc(out.view(-1, 128*16*16))
    return out

# 输入3层rgb ,输出 分类 2    
model = CNN(3, 2)

loss,优化函数:

line = viz.line(Y=np.arange(10))
loss_f = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=LR, momentum=0.9)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)

参数:

BATCH_SIZE = 4
LR = 0.001
EPOCHS = 10

运行 10个 epoch 看看:

[9/10] train_loss:0.650|train_acc:0.639|test_loss:0.621|test_acc0.706
[10/10] train_loss:0.645|train_acc:0.627|test_loss:0.654|test_acc0.686
Training complete in 1m 16s
Best val Acc: 0.712418

pytorch + visdom CNN处理自建图片数据集的方法

运行 20个看看:

[19/20] train_loss:0.592|train_acc:0.701|test_loss:0.563|test_acc0.712
[20/20] train_loss:0.564|train_acc:0.721|test_loss:0.571|test_acc0.706
Training complete in 2m 30s
Best val Acc: 0.745098

pytorch + visdom CNN处理自建图片数据集的方法

准确率比较低:只有74.5%

我们使用models 里的 resnet18 运行 10个epoch:

model = torchvision.models.resnet18(True)
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, 2)

[9/10] train_loss:0.621|train_acc:0.652|test_loss:0.588|test_acc0.667
[10/10] train_loss:0.610|train_acc:0.680|test_loss:0.561|test_acc0.667
Training complete in 1m 24s
Best val Acc: 0.686275

效果也很一般,想要短时间内就训练出效果很好的models,我们可以下载训练好的state,在此基础上训练:

model = torchvision.models.resnet18(pretrained=True)
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, 2)

[9/10] train_loss:0.308|train_acc:0.877|test_loss:0.160|test_acc0.941
[10/10] train_loss:0.267|train_acc:0.885|test_loss:0.148|test_acc0.954
Training complete in 1m 25s
Best val Acc: 0.954248

10个epoch直接的到95%的准确率。

pytorch + visdom CNN处理自建图片数据集的方法

示例代码:https://github.com/ffzs/ml_pytorch/blob/master/ml_pytorch_hymenoptera

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python笔记(2)
Oct 24 Python
python通过线程实现定时器timer的方法
Mar 16 Python
python中Flask框架简单入门实例
Mar 21 Python
python中利用Future对象回调别的函数示例代码
Sep 07 Python
Python实现获取本地及远程图片大小的方法示例
Jul 21 Python
Python使用ctypes调用C/C++的方法
Jan 29 Python
Python 限制线程的最大数量的方法(Semaphore)
Feb 22 Python
python数据化运营的重要意义
Nov 25 Python
一文了解python 3 字符串格式化 F-string 用法
Mar 04 Python
Python实现定时监测网站运行状态的示例代码
Sep 30 Python
如何在 Matplotlib 中更改绘图背景的实现
Nov 26 Python
Python采集壁纸并实现炫轮播
Apr 30 Python
python验证码识别教程之滑动验证码
Jun 04 #Python
python验证码识别教程之利用投影法、连通域法分割图片
Jun 04 #Python
python验证码识别教程之灰度处理、二值化、降噪与tesserocr识别
Jun 04 #Python
实用自动化运维Python脚本分享
Jun 04 #Python
python中验证码连通域分割的方法详解
Jun 04 #Python
python 匹配url中是否存在IP地址的方法
Jun 04 #Python
Python实现ping指定IP的示例
Jun 04 #Python
You might like
《斗罗大陆》六翼天使武魂最强,为什么老千家不是上三宗?
2020/03/02 国漫
php中随机显示图片的函数代码
2011/06/23 PHP
php在线代理转向代码
2012/05/05 PHP
PHP的邮件群发系统phplist配置方法详细总结
2016/03/30 PHP
PHP使用PDO访问oracle数据库的步骤详解
2017/09/29 PHP
Laravel实现短信注册的示例代码
2018/05/29 PHP
在Laravel 中实现是否关注的示例
2019/10/22 PHP
浅谈JavaScript中面向对象技术的模拟
2006/09/25 Javascript
jquery表格内容筛选实现思路及代码
2013/04/16 Javascript
jquery基础教程之数组使用详解
2014/03/10 Javascript
Javascript解析URL方法详解
2014/12/05 Javascript
Jquery中的$.each获取各种返回类型数据的使用方法
2015/05/03 Javascript
jQuery实现列表内容的动态载入特效
2015/08/08 Javascript
JS实现“隐藏与显示”功能(多种方法)
2016/11/24 Javascript
微信小程序tabbar不显示解决办法
2017/06/08 Javascript
重学JS之显示强制类型转换详解
2019/06/30 Javascript
编写v-for循环的技巧汇总
2020/12/01 Javascript
[51:11]2014 DOTA2国际邀请赛中国区预选赛5.21 LGD-CDEC VS DT
2014/05/22 DOTA
[39:46]完美世界DOTA2联赛PWL S2 LBZS vs Rebirth 第二场 11.25
2020/11/25 DOTA
python将字符串转换成数组的方法
2015/04/29 Python
多个应用共存的Django配置方法
2018/05/30 Python
Python Pandas 转换unix时间戳方式
2019/12/07 Python
python实现简单俄罗斯方块
2020/03/13 Python
python访问hdfs的操作
2020/06/06 Python
python利用os模块编写文件复制功能——copy()函数用法
2020/07/13 Python
纯CSS3编写的的精美动画进度条(无flash/无图像/无脚本/附源码)
2013/01/07 HTML / CSS
Mixbook加拿大:照片书,照片卡,剪贴簿,年历和日历
2017/02/21 全球购物
卡西欧B级产品官方网站:Casio Outlet
2018/05/22 全球购物
美国环保妈妈、儿童和婴儿用品购物网站:The Tot
2019/11/24 全球购物
自动化专业本科毕业生求职信
2013/10/20 职场文书
幼儿园实习自我鉴定
2013/12/15 职场文书
素食餐饮项目创业计划书
2014/02/02 职场文书
领导党的群众路线教育实践活动个人对照检查材料
2014/09/23 职场文书
2015年税务稽查工作总结
2015/05/26 职场文书
靠谱准确的求职信
2019/04/02 职场文书
Java实战之课程信息管理系统的实现
2022/04/01 Java/Android