python3实现基于用户的协同过滤


Posted in Python onMay 31, 2018

本文实例为大家分享了python3实现基于用户协同过滤的具体代码,供大家参考,具体内容如下

废话不多说,直接看代码。

#!/usr/bin/python3 
# -*- coding: utf-8 -*- 
#20170916号协同过滤电影推荐基稿 
#字典等格式数据处理及直接写入文件 
 
 
##from numpy import * 
import time 
from math import sqrt 
##from texttable import Texttable 
 
 
class CF: 
 
 def __init__(self, movies, ratings, k=5, n=20): 
  self.movies = movies#[MovieID,Title,Genres] 
  (self.train_data,self.test_data) = (ratings[0], ratings[1])#[UserID::MovieID::Rating::Timestamp] 
  # 邻居个数 
  self.k = k 
  # 推荐个数 
  self.n = n 
  # 用户对电影的评分 
  # 数据格式{'UserID用户ID':[(MovieID电影ID,Rating用户对电影的评星)]} 
  self.userDict = {} 
  # 对某电影评分的用户 
  # 数据格式:{'MovieID电影ID':[UserID,用户ID]} 
  # {'1',[1,2,3..],...} 
  self.ItemUser = {} 
  # 邻居的信息 
  self.neighbors = [] 
  # 推荐列表 
  self.recommandList = []#包含dist和电影id 
  self.recommand = [] #训练集合测试集的交集,且仅有电影id 
  #用户评过电影信息 
  self.train_user = [] 
  self.test_user = [] 
  #给用户的推荐列表,仅含movieid 
  self.train_rec =[] 
  self.test_rec = [] 
  #test中的电影评分预测数据集合, 
  self.forecast = {}#前k个近邻的评分集合 
  self.score = {}#最终加权平均后的评分集合{“电影id”:预测评分} 
  #召回率和准确率 
  self.pre = [0.0,0.0] 
  self.z = [0.0, 0.0] 
 ''''' 
 userDict数据格式: 
 '3': [('3421', 0.8), ('1641', 0.4), ('648', 0.6), ('1394', 0.8), ('3534', 0.6), ('104', 0.8), 
 ('2735', 0.8), ('1210', 0.8), ('1431', 0.6), ('3868', 0.6), ('1079', 1.0), ('2997', 0.6), 
 ('1615', 1.0), ('1291', 0.8), ('1259', 1.0), ('653', 0.8), ('2167', 1.0), ('1580', 0.6), 
 ('3619', 0.4), ('260', 1.0), ('2858', 0.8), ('3114', 0.6), ('1049', 0.8), ('1261', 0.2), 
 ('552', 0.8), ('480', 0.8), ('1265', 0.4), ('1266', 1.0), ('733', 1.0), ('1196', 0.8), 
 ('590', 0.8), ('2355', 1.0), ('1197', 1.0), ('1198', 1.0), ('1378', 1.0), ('593', 0.6), 
 ('1379', 0.8), ('3552', 1.0), ('1304', 1.0), ('1270', 0.6), ('2470', 0.8), ('3168', 0.8), 
 ('2617', 0.4), ('1961', 0.8), ('3671', 1.0), ('2006', 0.8), ('2871', 0.8), ('2115', 0.8), 
 ('1968', 0.8), ('1136', 1.0), ('2081', 0.8)]} 
 ItemUser数据格式: 
 {'42': ['8'], '2746': ['10'], '2797': ['1'], '2987': ['5'], '1653': ['5', '8', '9'], 
 '194': ['5'], '3500': ['8', '10'], '3753': ['6', '7'], '1610': ['2', '5', '7'], 
 '1022': ['1', '10'], '1244': ['2'], '25': ['8', '9'] 
 ''' 
  
# 将ratings转换为userDict和ItemUser 
 def formatRate(self,train_or_test): 
  self.userDict = {} 
  self.ItemUser = {} 
  for i in train_or_test:#[UserID,MovieID,Rating,Timestamp] 
   # 评分最高为5 除以5 进行数据归一化 
##   temp = (i[1], float(i[2]) / 5) 
   temp = (i[1], float(i[2])) 
##   temp = (i[1], i[2]) 
   # 计算userDict {'用户id':[(电影id,评分),(2,5)...],'2':[...]...}一个观众对每一部电影的评分集合 
   if(i[0] in self.userDict): 
    self.userDict[i[0]].append(temp) 
   else: 
    self.userDict[i[0]] = [temp] 
   # 计算ItemUser {'电影id',[用户id..],...}同一部电影的观众集合 
   if(i[1] in self.ItemUser): 
    self.ItemUser[i[1]].append(i[0]) 
   else: 
    self.ItemUser[i[1]] = [i[0]]   
 
 # 格式化userDict数据 
 def formatuserDict(self, userId, p):#userID为待查询目标,p为近邻对象 
  user = {} 
  #user数据格式为:电影id:[userID的评分,近邻用户的评分] 
  for i in self.userDict[userId]:#i为userDict数据中的每个括号同81行 
   user[i[0]] = [i[1], 0] 
  for j in self.userDict[p]: 
   if(j[0] not in user): 
    user[j[0]] = [0, j[1]]#说明目标用户和近邻用户没有同时对一部电影评分 
   else: 
    user[j[0]][1] = j[1]#说明两者对同一部电影都有评分 
  return user 
  
   
 
 # 计算余弦距离 
 def getCost(self, userId, p): 
  # 获取用户userId和p评分电影的并集 
  # {'电影ID':[userId的评分,p的评分]} 没有评分为0 
  user = self.formatuserDict(userId, p) 
  x = 0.0 
  y = 0.0 
  z = 0.0 
  for k, v in user.items():#k是键,v是值 
   x += float(v[0]) * float(v[0]) 
   y += float(v[1]) * float(v[1]) 
   z += float(v[0]) * float(v[1]) 
  if(z == 0.0): 
   return 0 
  return z / sqrt(x * y) 
 #计算皮尔逊相似度 
##  def getCost(self, userId, p): 
##   # 获取用户userId和l评分电影的并集 
##   # {'电影ID':[userId的评分,l的评分]} 没有评分为0 
##   user = self.formatuserDict(userId, p) 
##   sumxsq = 0.0 
##   sumysq = 0.0 
##   sumxy = 0.0 
##   sumx = 0.0 
##   sumy = 0.0 
##   n = len(user) 
##   for k, v in user.items(): 
##    sumx +=float(v[0]) 
##    sumy +=float(v[1]) 
##    sumxsq += float(v[0]) * float(v[0]) 
##    sumysq += float(v[1]) * float(v[1]) 
##    sumxy += float(v[0]) * float(v[1]) 
##   up = sumxy -sumx*sumy/n 
##   down = sqrt((sumxsq - pow(sumxsq,2)/n)*(sumysq - pow(sumysq,2)/n)) 
##   if(down == 0.0): 
##    return 0 
##   return up/down 
 
# 找到某用户的相邻用户 
 def getNearestNeighbor(self, userId): 
  neighbors = [] 
  self.neighbors = [] 
  # 获取userId评分的电影都有那些用户也评过分 
  for i in self.userDict[userId]:#i为userDict数据中的每个括号同95行#user数据格式为:电影id:[userID的评分,近邻用户的评分] 
   for j in self.ItemUser[i[0]]:#i[0]为电影编号,j为看同一部电影的每位用户 
    if(j != userId and j not in neighbors): 
     neighbors.append(j) 
  # 计算这些用户与userId的相似度并排序 
  for i in neighbors:#i为用户id 
   dist = self.getCost(userId, i) 
   self.neighbors.append([dist, i]) 
  # 排序默认是升序,reverse=True表示降序 
  self.neighbors.sort(reverse=True) 
  self.neighbors = self.neighbors[:self.k]#切片操作,取前k个 
##  print('neighbors',len(neighbors)) 
 
  # 获取推荐列表 
 def getrecommandList(self, userId): 
  self.recommandList = [] 
  # 建立推荐字典 
  recommandDict = {} 
  for neighbor in self.neighbors:#这里的neighbor数据格式为[[dist,用户id],[],....] 
   movies = self.userDict[neighbor[1]]#movies数据格式为[(电影id,评分),(),。。。。] 
   for movie in movies: 
    if(movie[0] in recommandDict): 
     recommandDict[movie[0]] += neighbor[0]####???? 
    else: 
     recommandDict[movie[0]] = neighbor[0] 
 
  # 建立推荐列表 
  for key in recommandDict:#recommandDict数据格式{电影id:累计dist,。。。} 
   self.recommandList.append([recommandDict[key], key])#recommandList数据格式【【累计dist,电影id】,【】,。。。。】 
  self.recommandList.sort(reverse=True) 
##  print(len(self.recommandList)) 
  self.recommandList = self.recommandList[:self.n] 
##  print(len(self.recommandList)) 
 # 推荐的准确率 
 def getPrecision(self, userId): 
##  print("开始!!!") 
#先运算test_data,这样最终self.neighbors等保留的是后来计算train_data后的数据(不交换位置的话就得在gR函数中增加参数保留各自的neighbor) 
  (self.test_user,self.test_rec) = self.getRecommand(self.test_data,userId)#测试集的用户userId所评价的电影和给该用户推荐的电影列表 
  (self.train_user,self.train_rec) = self.getRecommand(self.train_data,userId)#训练集的用户userId所评价的所有电影集合(self.train_user)和给该用户推荐的电影列表(self.train_rec) 
#西安电大的张海朋:基于协同过滤的电影推荐系统的构建(2015)中的准确率召回率计算 
  for i in self.test_rec: 
   if i in self.train_rec: 
    self.recommand.append(i) 
  self.pre[0] = len(self.recommand)/len(self.train_rec) 
  self.z[0] = len(self.recommand)/len(self.test_rec) 
  #北京交大黄宇:基于协同过滤的推荐系统设计与实现(2015)中的准、召计算 
  self.recommand = []#这里没有归零的话,下面计算初始recommand不为空 
  for i in self.train_rec: 
   if i in self.test_user: 
    self.recommand.append(i) 
  self.pre[1] = len(self.recommand)/len(self.train_rec) 
  self.z[1] = len(self.recommand)/len(self.test_user) 
##  print(self.train_rec,self.test_rec,"20",len(self.train_rec),len(self.train_rec)) 
  #对同一用户分别通过训练集和测试集处理 
 def getRecommand(self,train_or_test,userId): 
  self.formatRate(train_or_test) 
  self.getNearestNeighbor(userId) 
  self.getrecommandList(userId) 
  user = [i[0] for i in self.userDict[userId]]#用户userId评分的所有电影集合 
  recommand = [i[1] for i in self.recommandList]#推荐列表仅有电影id的集合,区别于recommandList(还含有dist) 
##  print("userid该用户已通过训练集测试集处理") 
  return (user,recommand) 
 #对test的电影进行评分预测 
 def foreCast(self): 
  self.forecast = {}#?????前面变量统一定义初始化后,函数内部是否需要该初始化???? 
  same_movie_id = [] 
  neighbors_id = [i[1] for i in self.neighbors] #近邻用户数据仅含用户id的集合  
     
  for i in self.test_user:#i为电影id,即在test里的i有被推荐到 
   if i in self.train_rec: 
    same_movie_id.append(i) 
    for j in self.ItemUser[i]:#j为用户id,即寻找近邻用户的评分和相似度 
     if j in neighbors_id: 
      user = [i[0] for i in self.userDict[j]]#self.userDict[userId]数据格式:数据格式为[(电影id,评分),(),。。。。];这里的userid应为近邻用户p 
      a = self.neighbors[neighbors_id.index(j)]#找到该近邻用户的数据【dist,用户id】 
      b = self.userDict[j][user.index(i)]#找到该近邻用户的数据【电影id,用户id】 
      c = [a[0], b[1], a[1]] 
      if (i in self.forecast): 
       self.forecast[i].append(c) 
      else: 
       self.forecast[i] = [c]#数据格式:字典{“电影id”:【dist,评分,用户id】【】}{'589': [[0.22655856915174025, 0.6, '419'], [0.36264561173211646, 1.0, '1349']。。。} 
##  print(same_movie_id) 
  #每个近邻用户的评分加权平均计算得预测评分 
  self.score = {} 
  if same_movie_id :#在test里的电影是否有在推荐列表里,如果为空不做判断,下面的处理会报错 
   for movieid in same_movie_id: 
    total_d = 0 
    total_down = 0 
    for d in self.forecast[movieid]:#此时的d已经是最里层的列表了【】;self.forecast[movieid]的数据格式[[]] 
     total_d += d[0]*d[1] 
     total_down += d[0] 
    self.score[movieid] = [round(total_d/total_down,3)]#加权平均后取3位小数的精度 
   #在test里但是推荐没有的电影id,这里先按零计算 
   for i in self.test_user: 
    if i not in movieid: 
     self.score[i] = [0] 
  else: 
   for i in self.test_user: 
    self.score[i] = [0] 
##  return self.score 
 #计算平均绝对误差MAE 
 def cal_Mae(self,userId): 
  self.formatRate(self.test_data) 
##  print(self.userDict) 
  for item in self.userDict[userId]: 
   if item[0] in self.score: 
    self.score[item[0]].append(item[1])#self.score数据格式[[预测分,实际分]] 
##  #过渡代码 
##  for i in self.score: 
##   pass 
  return self.score 
    # 基于用户的推荐 
 # 根据对电影的评分计算用户之间的相似度 
## def recommendByUser(self, userId): 
##  print("亲,请稍等片刻,系统正在快马加鞭为你运作中")   #人机交互辅助解读, 
##  self.getPrecision(self,userId) 
 
 
# 获取数据 
def readFile(filename): 
 files = open(filename, "r", encoding = "utf-8") 
 data = [] 
 for line in files.readlines(): 
  item = line.strip().split("::") 
  data.append(item) 
 return data 
 files.close() 
def load_dict_from_file(filepath): 
 _dict = {} 
 try: 
  with open(filepath, 'r',encoding = "utf -8") as dict_file: 
   for line in dict_file.readlines(): 
    (key, value) = line.strip().split(':') 
    _dict[key] = value 
 except IOError as ioerr: 
  print ("文件 %s 不存在" % (filepath)) 
 return _dict 
def save_dict_to_file(_dict, filepath): 
 try: 
  with open(filepath, 'w',encoding = "utf - 8") as dict_file: 
   for (key,value) in _dict.items(): 
    dict_file.write('%s:%s\n' % (key, value)) 
 
 except IOError as ioerr: 
  print ("文件 %s 无法创建" % (filepath)) 
def writeFile(data,filename): 
 with open(filename, 'w', encoding = "utf-8")as f: 
  f.write(data) 
 
 
# -------------------------开始------------------------------- 
 
def start3(): 
 start1 = time.clock() 
 movies = readFile("D:/d/movies.dat") 
 ratings = [readFile("D:/d/201709train.txt"),readFile("D:/d/201709test.txt")] 
 demo = CF(movies, ratings, k=20) 
 userId = '1000' 
 demo.getPrecision(userId) 
## print(demo.foreCast()) 
 demo.foreCast() 
 print(demo.cal_Mae(userId)) 
## demo.recommendByUser(ID)  #上一句只能实现固定用户查询,这句可以实现“想查哪个查哪个”,后期可以加个循环,挨个查,查到你不想查 
 print("处理的数据为%d条" % (len(ratings[0])+len(ratings[1]))) 
## print("____---",len(ratings[0]),len(ratings[1])) 
## print("准确率: %.2f %%" % (demo.pre * 100)) 
## print("召回率: %.2f %%" % (demo.z * 100)) 
 print(demo.pre) 
 print(demo.z) 
 end1 = time.clock() 
 print("耗费时间: %f s" % (end1 - start1)) 
def start1(): 
 start1 = time.clock() 
 movies = readFile("D:/d/movies.dat") 
 ratings = [readFile("D:/d/201709train.txt"),readFile("D:/d/201709test.txt")] 
 demo = CF(movies, ratings, k = 20) 
 demo.formatRate(ratings[0]) 
 writeFile(str(demo.userDict),"D:/d/dd/userDict.txt") 
 writeFile(str(demo.ItemUser), "D:/d/dd/ItemUser.txt") 
## save_dict_to_file(demo.userDict,"D:/d/dd/userDict.txt") 
## save_dict_to_file(demo.ItemUser,"D:/d/dd/ItemUser.txt") 
 print("处理结束") 
## with open("D:/d/dd/userDict.txt",'r',encoding = 'utf-8') as f: 
##  diction = f.read() 
##  i = 0 
##  for j in eval(diction): 
##   print(j) 
##   i += 1 
##   if i == 4: 
##    break 
def start2(): 
 start1 = time.clock() 
 movies = readFile("D:/d/movies.dat") 
 ratings = [readFile("D:/d/201709train.txt"),readFile("D:/d/201709test.txt")] 
 demo = CF(movies, ratings, k = 20) 
 demo.formatRate_toMovie(ratings[0]) 
 writeFile(str(demo.movieDict),"D:/d/dd/movieDict.txt") 
## writeFile(str(demo.userDict),"D:/d/dd/userDict.txt") 
## writeFile(str(demo.ItemUser), "D:/d/dd/ItemUser.txt") 
## save_dict_to_file(demo.userDict,"D:/d/dd/userDict.txt") 
## save_dict_to_file(demo.ItemUser,"D:/d/dd/ItemUser.txt") 
 print("处理结束")  
 
if __name__ == '__main__': 
 start1()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python调用cmd命令行制作刷博器
Jan 13 Python
Python socket编程实例详解
May 27 Python
Python IDLE 错误:IDLE''s subprocess didn''t make connection 的解决方案
Feb 13 Python
Python使用迭代器捕获Generator返回值的方法
Apr 05 Python
python实现画圆功能
Jan 25 Python
python实现装饰器、描述符
Feb 28 Python
python zip()函数使用方法解析
Oct 31 Python
Python中低维数组填充高维数组的实现
Dec 02 Python
解决jupyter notebook 前面书写后面内容消失的问题
Apr 13 Python
python删除某个目录文件夹的方法
May 26 Python
Selenium关闭INFO:CONSOLE提示的解决
Dec 07 Python
Python turtle实现贪吃蛇游戏
Jun 18 Python
python控制windows剪贴板,向剪贴板中写入图片的实例
May 31 #Python
python用户评论标签匹配的解决方法
May 31 #Python
python批量查询、汉字去重处理CSV文件
May 31 #Python
python破解zip加密文件的方法
May 31 #Python
python删除本地夹里重复文件的方法
Nov 19 #Python
Python处理命令行参数模块optpars用法实例分析
May 31 #Python
python筛选出两个文件中重复行的方法
May 31 #Python
You might like
php入门小知识
2008/03/24 PHP
基于php中使用excel的简单介绍
2013/08/02 PHP
php通过执行CutyCapt命令实现网页截图的方法
2016/09/30 PHP
thinkphp5.0整合phpsocketio完整攻略(绕坑)
2018/10/12 PHP
php curl发送请求实例方法
2019/08/01 PHP
iframe 自适应高度[在IE6 IE7 FF下测试通过]
2009/04/13 Javascript
Lua表达式和控制结构学习笔记
2014/12/15 Javascript
JavaScript DSL 流畅接口(使用链式调用)实例
2015/03/15 Javascript
javascript适合移动端的日期时间拾取器
2015/11/10 Javascript
Bootstrap精简教程
2015/11/27 Javascript
纯JS代码实现一键分享功能
2016/04/20 Javascript
JS实现JSON.stringify的实例代码讲解
2017/02/07 Javascript
详解angularjs结合pagination插件实现分页功能
2017/02/10 Javascript
鼠标经过出现气泡框的简单实例
2017/03/17 Javascript
ionic中的$ionicPlatform.ready事件中的通用设置
2017/06/11 Javascript
基于Vue.js实现tab滑块效果
2017/07/23 Javascript
vue学习笔记之v-if和v-show的区别
2017/09/20 Javascript
jquery radio 动态控制选中失效问题的解决方法
2018/02/28 jQuery
vue内置指令详解
2018/04/03 Javascript
浅析vue-router原理
2018/10/19 Javascript
js实现盒子移动动画效果
2020/08/09 Javascript
[59:53]DOTA2-DPC中国联赛 正赛 VG vs Elephant BO3 第二场 3月6日
2021/03/11 DOTA
快速实现基于Python的微信聊天机器人示例代码
2017/03/03 Python
解读! Python在人工智能中的作用
2017/11/14 Python
python 寻找优化使成本函数最小的最优解的方法
2017/12/28 Python
一百多行python代码实现抢票助手
2018/09/25 Python
Python开发的十个小贴士和技巧及长常犯错误
2018/09/27 Python
python子线程退出及线程退出控制的代码
2019/10/16 Python
python解析xml文件方式(解析、更新、写入)
2020/03/05 Python
python 30行代码实现蚂蚁森林自动偷能量
2021/02/08 Python
英国户外装备和冒险服装零售商:alloutdoor
2018/01/30 全球购物
工商管理系学生的自我评价分享
2013/11/29 职场文书
成考报名单位证明范本
2014/01/16 职场文书
学子宴答谢词
2014/01/25 职场文书
合伙协议书
2014/04/23 职场文书
详解RedisTemplate下Redis分布式锁引发的系列问题
2021/04/27 Redis