浅谈pandas中DataFrame关于显示值省略的解决方法


Posted in Python onApril 08, 2018

python的pandas库是一个非常好的工具,里面的DataFrame更是常用且好用,最近是越用越觉得设计的漂亮,pandas的很多细节设计的都非常好,有待使用过程中发掘。

好了,发完感慨,说一下最近DataFrame遇到的一个细节:

在使用DataFrame中有时候会遇到表格中的value显示不完全,像下面这样:

In:
import pandas as pd
longString = u'''真正的科学家应当是个幻想家;谁不是幻想家,谁就只能把自己称为实践家。人生的磨难是很多的,
所以我们不可对于每一件轻微的伤害都过于敏感。在生活磨难面前,精神上的坚强和无动于衷是我们抵抗罪恶和人生意外的最好武器。'''
pd.DataFrame({'word':[longString]})

输出如下:

浅谈pandas中DataFrame关于显示值省略的解决方法

可以看到,显示值长度为50个后就出现了省略了,这个因为DataFrame默认的显示长度为50,不过可以改默认设置:

pd.set_option('max_colwidth',200)
pd.DataFrame({'word':[longString]})

浅谈pandas中DataFrame关于显示值省略的解决方法

通过设置就可以改变显示长度了。

关于set_option所有的参数介绍如下:

Available options:
- display.[chop_threshold, colheader_justify, column_space, date_dayfirst,
 date_yearfirst, encoding, expand_frame_repr, float_format, height, large_repr]
- display.latex.[escape, longtable, repr]
- display.[line_width, max_categories, max_columns, max_colwidth,
 max_info_columns, max_info_rows, max_rows, max_seq_items, memory_usage,
 mpl_style, multi_sparse, notebook_repr_html, pprint_nest_depth, precision,
 show_dimensions]
- display.unicode.[ambiguous_as_wide, east_asian_width]
- display.[width]
- io.excel.xls.[writer]
- io.excel.xlsm.[writer]
- io.excel.xlsx.[writer]
- io.hdf.[default_format, dropna_table]
- mode.[chained_assignment, sim_interactive, use_inf_as_null]
Parameters
----------
pat : str
 Regexp which should match a single option.
 Note: partial matches are supported for convenience, but unless you use the
 full option name (e.g. x.y.z.option_name), your code may break in future
 versions if new options with similar names are introduced.
value :
 new value of option.
Returns
-------
None
Raises
------
OptionError if no such option exists
Notes
-----
The available options with its descriptions:
display.chop_threshold : float or None
 if set to a float value, all float values smaller then the given threshold
 will be displayed as exactly 0 by repr and friends.
 [default: None] [currently: None]
display.colheader_justify : 'left'/'right'
 Controls the justification of column headers. used by DataFrameFormatter.
 [default: right] [currently: right]
display.column_space No description available.
 [default: 12] [currently: 12]
display.date_dayfirst : boolean
 When True, prints and parses dates with the day first, eg 20/01/2005
 [default: False] [currently: False]
display.date_yearfirst : boolean
 When True, prints and parses dates with the year first, eg 2005/01/20
 [default: False] [currently: False]
display.encoding : str/unicode
 Defaults to the detected encoding of the console.
 Specifies the encoding to be used for strings returned by to_string,
 these are generally strings meant to be displayed on the console.
 [default: UTF-8] [currently: UTF-8]
display.expand_frame_repr : boolean
 Whether to print out the full DataFrame repr for wide DataFrames across
 multiple lines, `max_columns` is still respected, but the output will
 wrap-around across multiple "pages" if its width exceeds `display.width`.
 [default: True] [currently: True]
display.float_format : callable
 The callable should accept a floating point number and return
 a string with the desired format of the number. This is used
 in some places like SeriesFormatter.
 See formats.format.EngFormatter for an example.
 [default: None] [currently: None]
display.height : int
 Deprecated.
 [default: 60] [currently: 60]
 (Deprecated, use `display.max_rows` instead.)
display.large_repr : 'truncate'/'info'
 For DataFrames exceeding max_rows/max_cols, the repr (and HTML repr) can
 show a truncated table (the default from 0.13), or switch to the view from
 df.info() (the behaviour in earlier versions of pandas).
 [default: truncate] [currently: truncate]
display.latex.escape : bool
 This specifies if the to_latex method of a Dataframe uses escapes special
 characters.
 method. Valid values: False,True
 [default: True] [currently: True]
display.latex.longtable :bool
 This specifies if the to_latex method of a Dataframe uses the longtable
 format.
 method. Valid values: False,True
 [default: False] [currently: False]
display.latex.repr : boolean
 Whether to produce a latex DataFrame representation for jupyter
 environments that support it.
 (default: False)
 [default: False] [currently: False]
display.line_width : int
 Deprecated.
 [default: 80] [currently: 80]
 (Deprecated, use `display.width` instead.)
display.max_categories : int
 This sets the maximum number of categories pandas should output when
 printing out a `Categorical` or a Series of dtype "category".
 [default: 8] [currently: 8]
display.max_columns : int
 If max_cols is exceeded, switch to truncate view. Depending on
 `large_repr`, objects are either centrally truncated or printed as
 a summary view. 'None' value means unlimited.
 In case python/IPython is running in a terminal and `large_repr`
 equals 'truncate' this can be set to 0 and pandas will auto-detect
 the width of the terminal and print a truncated object which fits
 the screen width. The IPython notebook, IPython qtconsole, or IDLE
 do not run in a terminal and hence it is not possible to do
 correct auto-detection.
 [default: 20] [currently: 20]
display.max_colwidth : int
 The maximum width in characters of a column in the repr of
 a pandas data structure. When the column overflows, a "..."
 placeholder is embedded in the output.
 [default: 50] [currently: 200]
display.max_info_columns : int
 max_info_columns is used in DataFrame.info method to decide if
 per column information will be printed.
 [default: 100] [currently: 100]
display.max_info_rows : int or None
 df.info() will usually show null-counts for each column.
 For large frames this can be quite slow. max_info_rows and max_info_cols
 limit this null check only to frames with smaller dimensions than
 specified.
 [default: 1690785] [currently: 1690785]
display.max_rows : int
 If max_rows is exceeded, switch to truncate view. Depending on
 `large_repr`, objects are either centrally truncated or printed as
 a summary view. 'None' value means unlimited.
 In case python/IPython is running in a terminal and `large_repr`
 equals 'truncate' this can be set to 0 and pandas will auto-detect
 the height of the terminal and print a truncated object which fits
 the screen height. The IPython notebook, IPython qtconsole, or
 IDLE do not run in a terminal and hence it is not possible to do
 correct auto-detection.
 [default: 60] [currently: 60]
display.max_seq_items : int or None
 when pretty-printing a long sequence, no more then `max_seq_items`
 will be printed. If items are omitted, they will be denoted by the
 addition of "..." to the resulting string.
 If set to None, the number of items to be printed is unlimited.
 [default: 100] [currently: 100]
display.memory_usage : bool, string or None
 This specifies if the memory usage of a DataFrame should be displayed when
 df.info() is called. Valid values True,False,'deep'
 [default: True] [currently: True]
display.mpl_style : bool
 Setting this to 'default' will modify the rcParams used by matplotlib
 to give plots a more pleasing visual style by default.
 Setting this to None/False restores the values to their initial value.
 [default: None] [currently: None]
display.multi_sparse : boolean
 "sparsify" MultiIndex display (don't display repeated
 elements in outer levels within groups)
 [default: True] [currently: True]
display.notebook_repr_html : boolean
 When True, IPython notebook will use html representation for
 pandas objects (if it is available).
 [default: True] [currently: True]
display.pprint_nest_depth : int
 Controls the number of nested levels to process when pretty-printing
 [default: 3] [currently: 3]
display.precision : int
 Floating point output precision (number of significant digits). This is
 only a suggestion
 [default: 6] [currently: 6]
display.show_dimensions : boolean or 'truncate'
 Whether to print out dimensions at the end of DataFrame repr.
 If 'truncate' is specified, only print out the dimensions if the
 frame is truncated (e.g. not display all rows and/or columns)
 [default: truncate] [currently: truncate]
display.unicode.ambiguous_as_wide : boolean
 Whether to use the Unicode East Asian Width to calculate the display text
 width.
 Enabling this may affect to the performance (default: False)
 [default: False] [currently: False]
display.unicode.east_asian_width : boolean
 Whether to use the Unicode East Asian Width to calculate the display text
 width.
 Enabling this may affect to the performance (default: False)
 [default: False] [currently: False]
display.width : int
 Width of the display in characters. In case python/IPython is running in
 a terminal this can be set to None and pandas will correctly auto-detect
 the width.
 Note that the IPython notebook, IPython qtconsole, or IDLE do not run in a
 terminal and hence it is not possible to correctly detect the width.
 [default: 80] [currently: 80]
io.excel.xls.writer : string
 The default Excel writer engine for 'xls' files. Available options:
 'xlwt' (the default).
 [default: xlwt] [currently: xlwt]
io.excel.xlsm.writer : string
 The default Excel writer engine for 'xlsm' files. Available options:
 'openpyxl' (the default).
 [default: openpyxl] [currently: openpyxl]
io.excel.xlsx.writer : string
 The default Excel writer engine for 'xlsx' files. Available options:
 'xlsxwriter' (the default), 'openpyxl'.
 [default: xlsxwriter] [currently: xlsxwriter]
io.hdf.default_format : format
 default format writing format, if None, then
 put will default to 'fixed' and append will default to 'table'
 [default: None] [currently: None]
io.hdf.dropna_table : boolean
 drop ALL nan rows when appending to a table
 [default: False] [currently: False]
mode.chained_assignment : string
 Raise an exception, warn, or no action if trying to use chained assignment,
 The default is warn
 [default: warn] [currently: warn]
mode.sim_interactive : boolean
 Whether to simulate interactive mode for purposes of testing
 [default: False] [currently: False]
mode.use_inf_as_null : boolean
 True means treat None, NaN, INF, -INF as null (old way),
 False means None and NaN are null, but INF, -INF are not null
 (new way).
 [default: False] [currently: False]

以上这篇浅谈pandas中DataFrame关于显示值省略的解决方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
zbar解码二维码和条形码示例
Feb 07 Python
Python+django实现文件上传
Jan 17 Python
Python中对象迭代与反迭代的技巧总结
Sep 17 Python
Python对文件和目录进行操作的方法(file对象/os/os.path/shutil 模块)
May 08 Python
Python使用Matplotlib实现Logos设计代码
Dec 25 Python
python实现12306抢票及自动邮件发送提醒付款功能
Mar 08 Python
python 对象和json互相转换方法
Mar 22 Python
python隐藏终端执行cmd命令的方法
Jun 24 Python
Django如何简单快速实现PUT、DELETE方法
Jul 24 Python
Python中*args和**kwargs的区别详解
Sep 17 Python
Python 实现OpenCV格式和PIL.Image格式互转
Jan 09 Python
序列化Python对象的方法
Aug 01 Python
python3获取两个日期之间所有日期,以及比较大小的实例
Apr 08 #Python
python pandas中DataFrame类型数据操作函数的方法
Apr 08 #Python
python随机取list中的元素方法
Apr 08 #Python
Python实现的端口扫描功能示例
Apr 08 #Python
Python简单实现的代理服务器端口映射功能示例
Apr 08 #Python
pandas修改DataFrame列名的方法
Apr 08 #Python
Python数据分析库pandas基本操作方法
Apr 08 #Python
You might like
支持中文和其他编码的php截取字符串函数分享(截取中文字符串)
2014/03/13 PHP
2个比较经典的PHP加密解密函数分享
2014/07/01 PHP
PHP转盘抽奖接口实例
2015/02/09 PHP
php获取网页上所有链接的方法
2015/04/03 PHP
PHP表单验证内容是否为空的实现代码
2016/11/14 PHP
Zend Framework上传文件重命名的实现方法
2016/11/25 PHP
谈谈从phpinfo中能获取哪些值得注意的信息
2017/03/28 PHP
ASP.NET jQuery 实例5 (显示CheckBoxList成员选中的内容)
2012/01/13 Javascript
JavaScript人脸识别技术及脸部识别JavaScript类库Tracking.js
2015/09/14 Javascript
jquery在ie7下选择器的问题导致append失效的解决方法
2016/01/10 Javascript
JS控制层作圆周运动的方法
2016/06/20 Javascript
简洁实用的BootStrap jQuery手风琴插件
2016/08/31 Javascript
微信小程序 省市区选择器实例详解(附源码下载)
2017/01/05 Javascript
vue.js实现简单轮播图效果
2017/10/10 Javascript
Vue 使用中的小技巧
2018/04/26 Javascript
详解vue路由篇(动态路由、路由嵌套)
2019/01/27 Javascript
WEEX环境搭建与入门详解
2019/10/16 Javascript
Vue 实现创建全局组件,并且使用Vue.use() 载入方式
2020/08/11 Javascript
利用Python绘制数据的瀑布图的教程
2015/04/07 Python
Python实现数据库编程方法详解
2015/06/09 Python
在windows下Python打印彩色字体的方法
2018/05/15 Python
python xpath获取页面注释的方法
2019/01/14 Python
Python玩转Excel的读写改实例
2019/02/22 Python
Pandas DataFrame数据的更改、插入新增的列和行的方法
2019/06/25 Python
详解Python中的各种转义符\n\r\t
2019/07/10 Python
基于sklearn实现Bagging算法(python)
2019/07/11 Python
Python实现使用dir获取类的方法列表
2019/12/24 Python
tensorflow模型继续训练 fineturn实例
2020/01/21 Python
django创建css文件夹的具体方法
2020/07/31 Python
印度民族服装购物网站:BIBA
2019/08/05 全球购物
英国婚礼商城:Wedding Mall
2019/11/02 全球购物
畜牧兽医本科生的自我评价
2014/03/03 职场文书
学校安全生产月活动总结
2014/07/05 职场文书
蛋糕店创业计划书范文
2014/09/21 职场文书
2014年酒店服务员工作总结
2014/12/08 职场文书
浅谈Python从全局与局部变量到装饰器的相关知识
2021/06/21 Python