使用DataFrame删除行和列的实例讲解


Posted in Python onApril 08, 2018

本文通过一个csv实例文件来展示如何删除Pandas.DataFrame的行和列

数据文件名为:example.csv

内容为:

date spring summer autumn winter
2000 12.2338809 16.90730113 15.69238313 14.08596223
2001 12.84748057 16.75046873 14.51406637 13.5037456
2002 13.558175 17.2033926 15.6999475 13.23365247
2003 12.6547247 16.89491533 15.6614647 12.84347867
2004 13.2537298 17.04696657 15.20905377 14.3647912
2005 13.4443049 16.7459822 16.62218797 11.61082257
2006 13.50569567 16.83357857 15.4979282 12.19934363
2007 13.48852623 16.66773283 15.81701437 13.7438216
2008 13.1515319 16.48650693 15.72957287 12.93233587
2009 13.45771543 16.63923783 18.26017997 12.65315943
2010 13.1945485 16.7286889 15.42635267 13.8833583
2011 14.34779417 16.68942103 14.17658043 12.36654197
2012 13.6050867 17.13056773 14.71796777 13.29255243
2013 13.02790787 17.38619343 16.20345497 13.18612133
2014 12.74668163 16.54428687 14.7367682 12.87065125
2015 13.465904 16.50612317 12.44243663 11.0181384
season spring summer autumn winter
slope 0.0379691374 -0.01164689167 -0.07913844113 -0.07765274553

删除行

In [1]:
import numpy as np
import pandas as pd
odata = pd.read_csv('example.csv')
odata
Out[1]:
date  spring  summer  autumn  winter
0  2000  12.2338809  16.9073011333  15.6923831333  14.0859622333
1  2001  12.8474805667  16.7504687333  14.5140663667  13.5037456
2  2002  13.558175  17.2033926  15.6999475  13.2336524667
3  2003  12.6547247  16.8949153333  15.6614647  12.8434786667
4  2004  13.2537298  17.0469665667  15.2090537667  14.3647912
5  2005  13.4443049  16.7459822  16.6221879667  11.6108225667
6  2006  13.5056956667  16.8335785667  15.4979282  12.1993436333
7  2007  13.4885262333  16.6677328333  15.8170143667  13.7438216
8  2008  13.1515319  16.4865069333  15.7295728667  12.9323358667
9  2009  13.4577154333  16.6392378333  18.2601799667  12.6531594333
10  2010  13.1945485  16.7286889  15.4263526667  13.8833583
11  2011  14.3477941667  16.6894210333  14.1765804333  12.3665419667
12  2012  13.6050867  17.1305677333  14.7179677667  13.2925524333
13  2013  13.0279078667  17.3861934333  16.2034549667  13.1861213333
14  2014  12.7466816333  16.5442868667  14.7367682  12.8706512467
15  2015  13.465904  16.5061231667  12.4424366333  11.0181384
16  season  spring  summer  autumn  winter
17  slope  0.037969137402  -0.0116468916667  -0.0791384411275  -0.0776527455294

.drop()方法如果不设置参数inplace=True,则只能在生成的新数据块中实现删除效果,而不能删除原有数据块的相应行。

In [2]:
data = odata.drop([16,17])
odata
Out[2]:
date  spring  summer  autumn  winter
0  2000  12.2338809  16.9073011333  15.6923831333  14.0859622333
1  2001  12.8474805667  16.7504687333  14.5140663667  13.5037456
2  2002  13.558175  17.2033926  15.6999475  13.2336524667
3  2003  12.6547247  16.8949153333  15.6614647  12.8434786667
4  2004  13.2537298  17.0469665667  15.2090537667  14.3647912
5  2005  13.4443049  16.7459822  16.6221879667  11.6108225667
6  2006  13.5056956667  16.8335785667  15.4979282  12.1993436333
7  2007  13.4885262333  16.6677328333  15.8170143667  13.7438216
8  2008  13.1515319  16.4865069333  15.7295728667  12.9323358667
9  2009  13.4577154333  16.6392378333  18.2601799667  12.6531594333
10  2010  13.1945485  16.7286889  15.4263526667  13.8833583
11  2011  14.3477941667  16.6894210333  14.1765804333  12.3665419667
12  2012  13.6050867  17.1305677333  14.7179677667  13.2925524333
13  2013  13.0279078667  17.3861934333  16.2034549667  13.1861213333
14  2014  12.7466816333  16.5442868667  14.7367682  12.8706512467
15  2015  13.465904  16.5061231667  12.4424366333  11.0181384
16  season  spring  summer  autumn  winter
17  slope  0.037969137402  -0.0116468916667  -0.0791384411275  -0.0776527455294
In [3]:
data
Out[3]:
date  spring  summer  autumn  winter
0  2000  12.2338809  16.9073011333  15.6923831333  14.0859622333
1  2001  12.8474805667  16.7504687333  14.5140663667  13.5037456
2  2002  13.558175  17.2033926  15.6999475  13.2336524667
3  2003  12.6547247  16.8949153333  15.6614647  12.8434786667
4  2004  13.2537298  17.0469665667  15.2090537667  14.3647912
5  2005  13.4443049  16.7459822  16.6221879667  11.6108225667
6  2006  13.5056956667  16.8335785667  15.4979282  12.1993436333
7  2007  13.4885262333  16.6677328333  15.8170143667  13.7438216
8  2008  13.1515319  16.4865069333  15.7295728667  12.9323358667
9  2009  13.4577154333  16.6392378333  18.2601799667  12.6531594333
10  2010  13.1945485  16.7286889  15.4263526667  13.8833583
11  2011  14.3477941667  16.6894210333  14.1765804333  12.3665419667
12  2012  13.6050867  17.1305677333  14.7179677667  13.2925524333
13  2013  13.0279078667  17.3861934333  16.2034549667  13.1861213333
14  2014  12.7466816333  16.5442868667  14.7367682  12.8706512467
15  2015  13.465904  16.5061231667  12.4424366333  11.0181384

如果inplace=True则原有数据块的相应行被删除

In [4]:
odata.drop(odata.index[[16,17]],inplace=True)
odata
Out[4]:
date  spring  summer  autumn  winter
0  2000  12.2338809  16.9073011333  15.6923831333  14.0859622333
1  2001  12.8474805667  16.7504687333  14.5140663667  13.5037456
2  2002  13.558175  17.2033926  15.6999475  13.2336524667
3  2003  12.6547247  16.8949153333  15.6614647  12.8434786667
4  2004  13.2537298  17.0469665667  15.2090537667  14.3647912
5  2005  13.4443049  16.7459822  16.6221879667  11.6108225667
6  2006  13.5056956667  16.8335785667  15.4979282  12.1993436333
7  2007  13.4885262333  16.6677328333  15.8170143667  13.7438216
8  2008  13.1515319  16.4865069333  15.7295728667  12.9323358667
9  2009  13.4577154333  16.6392378333  18.2601799667  12.6531594333
10  2010  13.1945485  16.7286889  15.4263526667  13.8833583
11  2011  14.3477941667  16.6894210333  14.1765804333  12.3665419667
12  2012  13.6050867  17.1305677333  14.7179677667  13.2925524333
13  2013  13.0279078667  17.3861934333  16.2034549667  13.1861213333
14  2014  12.7466816333  16.5442868667  14.7367682  12.8706512467
15  2015  13.465904  16.5061231667  12.4424366333  11.0181384

删除列

del方法

In [5]:
del odata['date']
odata
Out[5]:
spring  summer  autumn  winter
0  12.2338809  16.9073011333  15.6923831333  14.0859622333
1  12.8474805667  16.7504687333  14.5140663667  13.5037456
2  13.558175  17.2033926  15.6999475  13.2336524667
3  12.6547247  16.8949153333  15.6614647  12.8434786667
4  13.2537298  17.0469665667  15.2090537667  14.3647912
5  13.4443049  16.7459822  16.6221879667  11.6108225667
6  13.5056956667  16.8335785667  15.4979282  12.1993436333
7  13.4885262333  16.6677328333  15.8170143667  13.7438216
8  13.1515319  16.4865069333  15.7295728667  12.9323358667
9  13.4577154333  16.6392378333  18.2601799667  12.6531594333
10  13.1945485  16.7286889  15.4263526667  13.8833583
11  14.3477941667  16.6894210333  14.1765804333  12.3665419667
12  13.6050867  17.1305677333  14.7179677667  13.2925524333
13  13.0279078667  17.3861934333  16.2034549667  13.1861213333
14  12.7466816333  16.5442868667  14.7367682  12.8706512467
15  13.465904  16.5061231667  12.4424366333  11.0181384

.pop()方法

.pop方法可以将所选列从原数据块中弹出,原数据块不再保留该列

In [6]:
spring = odata.pop('spring')
spring
Out[6]:
0    12.2338809
1   12.8474805667
2     13.558175
3    12.6547247
4    13.2537298
5    13.4443049
6   13.5056956667
7   13.4885262333
8    13.1515319
9   13.4577154333
10    13.1945485
11  14.3477941667
12    13.6050867
13  13.0279078667
14  12.7466816333
15    13.465904
Name: spring, dtype: object
In [7]:
odata
Out[7]:
summer  autumn  winter
0  16.9073011333  15.6923831333  14.0859622333
1  16.7504687333  14.5140663667  13.5037456
2  17.2033926  15.6999475  13.2336524667
3  16.8949153333  15.6614647  12.8434786667
4  17.0469665667  15.2090537667  14.3647912
5  16.7459822  16.6221879667  11.6108225667
6  16.8335785667  15.4979282  12.1993436333
7  16.6677328333  15.8170143667  13.7438216
8  16.4865069333  15.7295728667  12.9323358667
9  16.6392378333  18.2601799667  12.6531594333
10  16.7286889  15.4263526667  13.8833583
11  16.6894210333  14.1765804333  12.3665419667
12  17.1305677333  14.7179677667  13.2925524333
13  17.3861934333  16.2034549667  13.1861213333
14  16.5442868667  14.7367682  12.8706512467
15  16.5061231667  12.4424366333  11.0181384

.drop()方法

drop方法既可以保留原数据块中的所选列,也可以删除,这取决于参数inplace

In [8]:
withoutSummer = odata.drop(['summer'],axis=1)
withoutSummer
Out[8]:
autumn  winter
0  15.6923831333  14.0859622333
1  14.5140663667  13.5037456
2  15.6999475  13.2336524667
3  15.6614647  12.8434786667
4  15.2090537667  14.3647912
5  16.6221879667  11.6108225667
6  15.4979282  12.1993436333
7  15.8170143667  13.7438216
8  15.7295728667  12.9323358667
9  18.2601799667  12.6531594333
10  15.4263526667  13.8833583
11  14.1765804333  12.3665419667
12  14.7179677667  13.2925524333
13  16.2034549667  13.1861213333
14  14.7367682  12.8706512467
15  12.4424366333  11.0181384
In [9]:
odata
Out[9]:
summer  autumn  winter
0  16.9073011333  15.6923831333  14.0859622333
1  16.7504687333  14.5140663667  13.5037456
2  17.2033926  15.6999475  13.2336524667
3  16.8949153333  15.6614647  12.8434786667
4  17.0469665667  15.2090537667  14.3647912
5  16.7459822  16.6221879667  11.6108225667
6  16.8335785667  15.4979282  12.1993436333
7  16.6677328333  15.8170143667  13.7438216
8  16.4865069333  15.7295728667  12.9323358667
9  16.6392378333  18.2601799667  12.6531594333
10  16.7286889  15.4263526667  13.8833583
11  16.6894210333  14.1765804333  12.3665419667
12  17.1305677333  14.7179677667  13.2925524333
13  17.3861934333  16.2034549667  13.1861213333
14  16.5442868667  14.7367682  12.8706512467
15  16.5061231667  12.4424366333  11.0181384

当inplace=True时.drop()执行内部删除,不返回任何值,原数据发生改变

In [10]:
withoutWinter = odata.drop(['winter'],axis=1,inplace=True)
type(withoutWinter)
Out[10]:
NoneType
In [11]:
odata
Out[11]:
summer  autumne
0  16.9073011333  15.6923831333
1  16.7504687333  14.5140663667
2  17.2033926  15.6999475
3  16.8949153333  15.6614647
4  17.0469665667  15.2090537667
5  16.7459822  16.6221879667
6  16.8335785667  15.4979282
7  16.6677328333  15.8170143667
8  16.4865069333  15.7295728667
9  16.6392378333  18.2601799667
10  16.7286889  15.4263526667
11  16.6894210333  14.1765804333
12  17.1305677333  14.7179677667
13  17.3861934333  16.2034549667
14  16.5442868667  14.7367682
15  16.5061231667  12.4424366333

总结,不论是行删除还是列删除,也不论是原数据删除,还是输出新变量删除,.drop()的方法都能达到目的,为了方便好记,熟练操作,所以应该尽量多使用.drop()方法

Python 相关文章推荐
详解Python函数可变参数定义及其参数传递方式
Aug 02 Python
Python 输入一个数字判断成绩分数等级的方法
Nov 15 Python
python3+selenium实现126邮箱登陆并发送邮件功能
Jan 23 Python
三步实现Django Paginator分页的方法
Jun 11 Python
python中将两组数据放在一起按照某一固定顺序shuffle的实例
Jul 15 Python
Django中使用CORS实现跨域请求过程解析
Aug 05 Python
Python中list循环遍历删除数据的正确方法
Sep 02 Python
Python面向对象特殊属性及方法解析
Sep 16 Python
使用Python将xmind脑图转成excel用例的实现代码(一)
Oct 12 Python
Python调用JavaScript代码的方法
Oct 27 Python
Python 用__new__方法实现单例的操作
Dec 11 Python
Django中template for如何使用方法
Jan 31 Python
将字典转换为DataFrame并进行频次统计的方法
Apr 08 #Python
pandas创建新Dataframe并添加多行的实例
Apr 08 #Python
DataFrame中去除指定列为空的行方法
Apr 08 #Python
python 定时修改数据库的示例代码
Apr 08 #Python
对Python中DataFrame按照行遍历的方法
Apr 08 #Python
python2.6.6如何升级到python2.7.14
Apr 08 #Python
python解决pandas处理缺失值为空字符串的问题
Apr 08 #Python
You might like
The specified CGI application misbehaved by not returning a complete set of HTTP headers
2011/03/31 PHP
php echo, print, print_r, sprintf, var_dump, var_expor的使用区别
2013/06/20 PHP
php解析url的三个示例
2014/01/20 PHP
PHP按行读取文件时删除换行符的3种方法
2014/05/04 PHP
javascript js cookie的存储,获取和删除
2007/12/29 Javascript
基于jQuery的Tab选项框效果代码(插件)
2011/03/01 Javascript
JS案例分享之金额小写转大写
2014/05/15 Javascript
JS生成某个范围的随机数【四种情况详解】
2016/04/20 Javascript
React-router 4 按需加载的实现方式及原理详解
2017/05/25 Javascript
vue2.0实现前端星星评分功能组件实例代码
2018/02/12 Javascript
教你如何用node连接redis的示例代码
2018/07/12 Javascript
js逆向解密之网络爬虫
2019/05/30 Javascript
JS实现音量控制拖动
2020/01/15 Javascript
详解Node.js使用token进行认证的简单示例
2020/05/25 Javascript
ES2020 已定稿,真实场景案例分析
2020/05/25 Javascript
TypeScript 运行时类型检查补充工具
2020/09/28 Javascript
[02:51]DOTA2战队出征照拍摄花絮 TI3明星化身时尚男模
2013/07/22 DOTA
python获取指定网页上所有超链接的方法
2015/04/04 Python
简单介绍Python的Tornado框架中的协程异步实现原理
2015/04/23 Python
安装python时MySQLdb报错的问题描述及解决方法
2018/03/20 Python
基于python实现学生信息管理系统
2019/11/22 Python
判断Threading.start新线程是否执行完毕的实例
2020/05/02 Python
Python+Kepler.gl轻松制作酷炫路径动画的实现示例
2020/06/02 Python
使用Python爬取Json数据的示例代码
2020/12/07 Python
详解python使用金山词霸的翻译功能(调试工具断点的使用)
2021/01/07 Python
英国家电购物网站:Sonic Direct
2019/03/26 全球购物
印度排名第一的蛋糕、鲜花和礼品送货:Winni
2019/08/02 全球购物
Charles&Keith美国官方网站:新加坡快时尚鞋类和配饰零售商
2019/11/27 全球购物
基层党组织公开承诺书
2014/03/28 职场文书
初中英语演讲稿
2014/04/29 职场文书
作风建设演讲稿
2014/05/23 职场文书
交通安全教育主题班会
2015/08/12 职场文书
《思路决定出路》读后感3篇
2019/12/11 职场文书
python将图片转为矢量图的方法步骤
2021/03/30 Python
SQL Server内存机制浅探
2022/04/06 SQL Server
MYSQL如何查看操作日志详解
2022/05/30 MySQL