数据挖掘之Apriori算法详解和Python实现代码分享


Posted in Python onNovember 07, 2014

关联规则挖掘(Association rule mining)是数据挖掘中最活跃的研究方法之一,可以用来发现事情之间的联系,最早是为了发现超市交易数据库中不同的商品之间的关系。(啤酒与尿布)

基本概念

1、支持度的定义:support(X-->Y) = |X交Y|/N=集合X与集合Y中的项在一条记录中同时出现的次数/数据记录的个数。例如:support({啤酒}-->{尿布}) = 啤酒和尿布同时出现的次数/数据记录数 = 3/5=60%。

2、自信度的定义:confidence(X-->Y) = |X交Y|/|X| = 集合X与集合Y中的项在一条记录中同时出现的次数/集合X出现的个数 。例如:confidence({啤酒}-->{尿布}) = 啤酒和尿布同时出现的次数/啤酒出现的次数=3/3=100%;confidence({尿布}-->{啤酒}) = 啤酒和尿布同时出现的次数/尿布出现的次数 = 3/4 = 75%

同时满足最小支持度阈值(min_sup)和最小置信度阈值(min_conf)的规则称作强规则 ,如果项集满足最小支持度,则称它为频繁项集

“如何由大型数据库挖掘关联规则?”关联规则的挖掘是一个两步的过程:

1、找出所有频繁项集:根据定义,这些项集出现的频繁性至少和预定义的最小支持计数一样。
2、由频繁项集产生强关联规则:根据定义,这些规则必须满足最小支持度和最小置信度。

Apriori定律

为了减少频繁项集的生成时间,我们应该尽早的消除一些完全不可能是频繁项集的集合,Apriori的两条定律就是干这事的。

Apriori定律1:如果一个集合是频繁项集,则它的所有子集都是频繁项集。举例:假设一个集合{A,B}是频繁项集,即A、B同时出现在一条记录的次数大于等于最小支持度min_support,则它的子集{A},{B}出现次数必定大于等于min_support,即它的子集都是频繁项集。

Apriori定律2:如果一个集合不是频繁项集,则它的所有超集都不是频繁项集。举例:假设集合{A}不是频繁项集,即A出现的次数小于min_support,则它的任何超集如{A,B}出现的次数必定小于min_support,因此其超集必定也不是频繁项集。

数据挖掘之Apriori算法详解和Python实现代码分享

上面的图演示了Apriori算法的过程,注意看由二级频繁项集生成三级候选项集时,没有{牛奶,面包,啤酒},那是因为{面包,啤酒}不是二级频繁项集,这里利用了Apriori定理。最后生成三级频繁项集后,没有更高一级的候选项集,因此整个算法结束,{牛奶,面包,尿布}是最大频繁子集。

Python实现代码:

Skip to content

Sign up Sign in This repository

Explore

Features

Enterprise

Blog

 Star 0  Fork 0 taizilongxu/datamining

 branch: master  datamining / apriori / apriori.py

hackerxutaizilongxu 20 days ago backup

1 contributor

156 lines (140 sloc)  6.302 kb RawBlameHistory   

#-*- encoding: UTF-8 -*-

#---------------------------------import------------------------------------

#---------------------------------------------------------------------------

class Apriori(object):
    def __init__(self, filename, min_support, item_start, item_end):

        self.filename = filename

        self.min_support = min_support # 最小支持度

        self.min_confidence = 50

        self.line_num = 0 # item的行数

        self.item_start = item_start #  取哪行的item

        self.item_end = item_end
        self.location = [[i] for i in range(self.item_end - self.item_start + 1)]

        self.support = self.sut(self.location)

        self.num = list(sorted(set([j for i in self.location for j in i])))# 记录item
        self.pre_support = [] # 保存前一个support,location,num

        self.pre_location = []

        self.pre_num = []
        self.item_name = [] # 项目名

        self.find_item_name()

        self.loop()

        self.confidence_sup()
    def deal_line(self, line):

        "提取出需要的项"

        return [i.strip() for i in line.split(' ') if i][self.item_start - 1:self.item_end]
    def find_item_name(self):

        "根据第一行抽取item_name"

        with open(self.filename, 'r') as F:

            for index,line in enumerate(F.readlines()):

                if index == 0:

                    self.item_name = self.deal_line(line)

                    break
    def sut(self, location):

        """

        输入[[1,2,3],[2,3,4],[1,3,5]...]

        输出每个位置集的support [123,435,234...]

        """

        with open(self.filename, 'r') as F:

            support = [0] * len(location)

            for index,line in enumerate(F.readlines()):

                if index == 0: continue

                # 提取每信息

                item_line = self.deal_line(line)

                for index_num,i in enumerate(location):

                    flag = 0

                    for j in i:

                        if item_line[j] != 'T':

                            flag = 1

                            break

                    if not flag:

                        support[index_num] += 1

            self.line_num = index # 一共多少行,出去第一行的item_name

        return support
    def select(self, c):

        "返回位置"

        stack = []

        for i in self.location:

            for j in self.num:

                if j in i:

                    if len(i) == c:

                        stack.append(i)

                else:

                    stack.append([j] + i)

        # 多重列表去重

        import itertools

        s = sorted([sorted(i) for i in stack])

        location = list(s for s,_ in itertools.groupby(s))

        return location
    def del_location(self, support, location):

        "清除不满足条件的候选集"

        # 小于最小支持度的剔除

        for index,i in enumerate(support):

            if i < self.line_num * self.min_support / 100:

                support[index] = 0

        # apriori第二条规则,剔除

        for index,j in enumerate(location):

            sub_location = [j[:index_loc] + j[index_loc+1:]for index_loc in range(len(j))]

            flag = 0

            for k in sub_location:

                if k not in self.location:

                    flag = 1

                    break

            if flag:

                support[index] = 0

        # 删除没用的位置

        location = [i for i,j in zip(location,support) if j != 0]

        support = [i for i in support if i != 0]

        return support, location
    def loop(self):

        "s级频繁项级的迭代"

        s = 2

        while True:

            print '-'*80

            print 'The' ,s - 1,'loop'

            print 'location' , self.location

            print 'support' , self.support

            print 'num' , self.num

            print '-'*80
            # 生成下一级候选集

            location = self.select(s)

            support = self.sut(location)

            support, location = self.del_location(support, location)

            num = list(sorted(set([j for i in location for j in i])))

            s += 1

            if  location and support and num:

                self.pre_num = self.num

                self.pre_location = self.location

                self.pre_support = self.support
                self.num = num

                self.location = location

                self.support = support

            else:

                break
    def confidence_sup(self):

        "计算confidence"

        if sum(self.pre_support) == 0:

            print 'min_support error' # 第一次迭代即失败

        else:

            for index_location,each_location in enumerate(self.location):

                del_num = [each_location[:index] + each_location[index+1:] for index in range(len(each_location))] # 生成上一级频繁项级

                del_num = [i for i in del_num if i in self.pre_location] # 删除不存在上一级频繁项级子集

                del_support = [self.pre_support[self.pre_location.index(i)] for i in del_num if i in self.pre_location] # 从上一级支持度查找

                # print del_num

                # print self.support[index_location]

                # print del_support

                for index,i in enumerate(del_num): # 计算每个关联规则支持度和自信度

                    index_support = 0

                    if len(self.support) != 1:

                        index_support = index

                    support =  float(self.support[index_location])/self.line_num * 100 # 支持度

                    s = [j for index_item,j in enumerate(self.item_name) if index_item in i]

                    if del_support[index]:

                        confidence = float(self.support[index_location])/del_support[index] * 100

                        if confidence > self.min_confidence:

                            print ','.join(s) , '->>' , self.item_name[each_location[index]] , ' min_support: ' , str(support) + '%' , ' min_confidence:' , str(confidence) + '%'
def main():

    c = Apriori('basket.txt', 14, 3, 13)

    d = Apriori('simple.txt', 50, 2, 6)
if __name__ == '__main__':

    main()

############################################################################

Status API Training Shop Blog About

© 2014 GitHub, Inc. Terms Privacy Security Contact

Apriori算法

Apriori(filename, min_support, item_start, item_end)

参数说明

filename:(路径)文件名
min_support:最小支持度
item_start:item起始位置
item_end:item结束位置

使用例子:

import apriori

c = apriori.Apriori('basket.txt', 11, 3, 13)

输出:

--------------------------------------------------------------------------------

The 1 loop

location [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]]

support [299, 183, 177, 303, 204, 302, 293, 287, 184, 292, 276]

num [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

--------------------------------------------------------------------------------

--------------------------------------------------------------------------------

The 2 loop

location [[0, 9], [3, 5], [3, 6], [5, 6], [7, 10]]

support [145, 173, 167, 170, 144]

num [0, 3, 5, 6, 7, 9, 10]

--------------------------------------------------------------------------------

--------------------------------------------------------------------------------

The 3 loop

location [[3, 5, 6]]

support [146]

num [3, 5, 6]

--------------------------------------------------------------------------------

frozenmeal,beer ->> cannedveg  min_support:  14.6%  min_confidence: 0.858823529412

cannedveg,beer ->> frozenmeal  min_support:  14.6%  min_confidence: 0.874251497006

cannedveg,frozenmeal ->> beer  min_support:  14.6%  min_confidence: 0.843930635838

--------------------------------------------------------------------------------
Python 相关文章推荐
Python中处理字符串之isalpha()方法的使用
May 18 Python
浅谈Python的文件类型
May 30 Python
Python科学计算之NumPy入门教程
Jan 15 Python
Python功能点实现:函数级/代码块级计时器
Jan 02 Python
Python基础教程之if判断,while循环,循环嵌套
Apr 25 Python
Python闭包和装饰器用法实例详解
May 22 Python
python 使用plt画图,去除图片四周的白边方法
Jul 09 Python
python 动态调用函数实例解析
Oct 21 Python
python等差数列求和公式前 100 项的和实例
Feb 25 Python
Keras模型转成tensorflow的.pb操作
Jul 06 Python
golang特有程序结构入门教程
Jun 02 Python
Python实现对齐打印 format函数的用法
Apr 28 Python
Python的subprocess模块总结
Nov 07 #Python
Python实现的监测服务器硬盘使用率脚本分享
Nov 07 #Python
Python实现的简单发送邮件脚本分享
Nov 07 #Python
Python获取Linux系统下的本机IP地址代码分享
Nov 07 #Python
零基础写python爬虫之使用Scrapy框架编写爬虫
Nov 07 #Python
零基础写python爬虫之爬虫框架Scrapy安装配置
Nov 06 #Python
零基础写python爬虫之爬虫编写全记录
Nov 06 #Python
You might like
详解 PHP加密解密字符串函数附源码下载
2015/12/18 PHP
PHP判断是手机端还是PC端 PHP判断是否是微信浏览器
2017/03/15 PHP
JavaScript 动态创建VML的方法
2009/10/14 Javascript
jquery的index方法实现tab效果
2011/02/16 Javascript
FireFox下XML对象转化成字符串的解决方法
2011/12/09 Javascript
JS获取当前网址、主机地址项目根路径
2013/11/19 Javascript
javascript事件模型实例分析
2015/01/30 Javascript
javascript实现的固定位置悬浮窗口实例
2015/04/30 Javascript
JavaScript 性能优化小结
2015/10/12 Javascript
JS+CSS3制作炫酷的弹窗效果
2016/11/08 Javascript
javascript流程控制语句集合
2017/09/18 Javascript
Bootstrap实现翻页效果
2017/11/27 Javascript
Angular4 反向代理Details实践
2018/05/30 Javascript
vue鼠标移入添加class样式,鼠标移出去除样式(active)实现方法
2018/08/22 Javascript
大转盘抽奖小程序版 转盘抽奖网页版
2020/04/16 Javascript
vue限制输入框只能输入8位整数和2位小数的代码
2019/11/06 Javascript
在vue中获取wangeditor的html和text的操作
2020/10/23 Javascript
在vant 中使用cell组件 定义图标该图片和位置操作
2020/11/02 Javascript
Python fileinput模块使用实例
2015/05/28 Python
Python中基本的日期时间处理的学习教程
2015/10/16 Python
Python操作Excel之xlsx文件
2017/03/24 Python
使用Python对Access读写操作
2017/03/30 Python
python实现远程通过网络邮件控制计算机重启或关机
2018/02/22 Python
python实时监控cpu小工具
2018/06/21 Python
Python使用post及get方式提交数据的实例
2019/01/24 Python
python matplotlib库绘制散点图例题解析
2019/08/10 Python
python是否适合网页编程详解
2019/10/04 Python
python3实现在二叉树中找出和为某一值的所有路径(推荐)
2019/12/26 Python
Python获取对象属性的几种方式小结
2020/03/12 Python
python 识别登录验证码图片功能的实现代码(完整代码)
2020/07/03 Python
缅甸网上购物:Shop.com.mm
2017/12/05 全球购物
学术会议欢迎词
2014/01/09 职场文书
汽车队司机先进事迹材料
2014/02/01 职场文书
岗位工作说明书
2014/07/29 职场文书
处级领导干部四风问题自我剖析材料
2014/09/29 职场文书
个人更名证明
2015/06/23 职场文书