Python&Matlab实现灰狼优化算法的示例代码


Posted in Python onMarch 21, 2022

1 灰狼优化算法基本思想

灰狼优化算法是一种群智能优化算法,它的独特之处在于一小部分拥有绝对话语权的灰狼带领一群灰狼向猎物前进。在了解灰狼优化算法的特点之前,我们有必要了解灰狼群中的等级制度。

Python&Matlab实现灰狼优化算法的示例代码

灰狼群一般分为4个等级:处于第一等级的灰狼用α表示,处于第二阶级的灰狼用β表示,处于第三阶段的灰狼用δ表示,处于第四等级的灰狼用ω表示。按照上述等级的划分,灰狼α对灰狼β、δ和ω有绝对的支配权;灰狼ω对灰狼δ和ω有绝对的支配权;灰狼δ对灰狼ω有绝对的支配权。

2 灰狼捕食猎物过程

GWO 优化过程包含了灰狼的社会等级分层、跟踪、包围和攻击猎物等步骤,其步骤具体情况如下所示。

2.1 社会等级分层

当设计 GWO 时,首先需构建灰狼社会等级层次模型。计算种群每个个体的适应度,将狼群中适应度最好的三匹灰狼依次标记为α、β、δ而剩下的灰狼标记为ω 。也就是说,灰狼群体中的社会等级从高往低排列依次为α、β、δ及 ω。GWO 的优化过程主要由每代种群中的最好三个解(即 α、β、δ)来指导完成。

2.2 包围猎物

灰狼群体通过以下几个公式逐渐接近并包围猎物:

Python&Matlab实现灰狼优化算法的示例代码

式中,t是当前的迭代代数,A和C是系数向量,Xp和X分别是猎物的位置向量和灰狼的位置向量。A和C的计算公式如下:  

Python&Matlab实现灰狼优化算法的示例代码

式中,a是收敛因子,随着迭代次数从2线性减小到0,r1和r 2服从[ 0,1]之间的均匀分布。

2.3 狩猎

狼群中其他灰狼个体Xi根据α、β和百的位置Xa、XB和Xo来更新各自的位置:

Python&Matlab实现灰狼优化算法的示例代码

式中,Da,Dβ和D6分别表示a,β和5与其他个体间的距离;Xa,Xβ和X6分别代表a,β和5的当前位置;C1,C2,C3是随机向量,X是当前灰狼的位置。

灰狼个体的位置更新公式如下:

Python&Matlab实现灰狼优化算法的示例代码

2.4 攻击猎物

构建攻击猎物模型的过程中,根据2)中的公式,a值的减少会引起 A 的值也随之波动。换句话说,A 是一个在区间[-a,a](备注:原作者的第一篇论文里这里是[-2a,2a],后面论文里纠正为[-a,a])上的随机向量,其中a在迭代过程中呈线性下降。当 A 在[-1,1]区间上时,则捜索代理(Search Agent)的下一时刻位置可以在当前灰狼与猎物之间的任何位置上。

2.5 寻找猎物

灰狼主要依赖α、β、δ的信息来寻找猎物。它们开始分散地去搜索猎物位置信息,然后集中起来攻击猎物。对于分散模型的建立,通过|A|>1使其捜索代理远离猎物,这种搜索方式使 GWO 能进行全局搜索。GWO 算法中的另一个搜索系数是C。从2.2中的公式可知,C向量是在区间范围[0,2]上的随机值构成的向量,此系数为猎物提供了随机权重,以便増加(|C|>1)或减少(|C|<1)。这有助于 GWO 在优化过程中展示出随机搜索行为,以避免算法陷入局部最优。值得注意的是,C并不是线性下降的,C在迭代过程中是随机值,该系数有利于算法跳出局部,特别是算法在迭代的后期显得尤为重要。

3 实现步骤及程序框图

3.1 步骤

Step1:种群初始化:包括种群数量N,最大迭代次数Maxlter,调控参数a,A,C.

Step2:根据变量的上下界来随机初始化灰狼个体的位置X。

Step3:计算每一头狼的适应度值,并将种群中适应度值最优的狼的位置信息保存Xα,将种群中适应度值次优的狼的位置信息保存为Xβ,将种群中适应度第三优的灰狼的位置信息保存为Xγ

Step4:更新灰狼个体X的位置。

step5:更新参数a,A和C。

Step6:计算每一头灰狼的适应度值,并更新三匹头狼的最优位置。

Step7:判断是否到达最大迭代次数Maxlter,若满足则算法停止并返回Xa的值作为最终得到的最优解,否则转到Step4。

3.2 程序框图

Python&Matlab实现灰狼优化算法的示例代码

4 Python代码实现

#=======导入线管库======
import random
import numpy
 
#完整代码见微信公众号:电力系统与算法之美
#输入关键字:灰狼算法
 
def GWO(objf, lb, ub, dim, SearchAgents_no, Max_iter):
 
    #===初始化 alpha, beta, and delta_pos=======
    Alpha_pos = numpy.zeros(dim)  # 位置.形成30的列表
    Alpha_score = float("inf")  # 这个是表示“正负无穷”,所有数都比 +inf 小;正无穷:float("inf"); 负无穷:float("-inf")
 
    Beta_pos = numpy.zeros(dim)
    Beta_score = float("inf")
 
    Delta_pos = numpy.zeros(dim)
    Delta_score = float("inf")  # float() 函数用于将整数和字符串转换成浮点数。
 
    #====list列表类型=============
    if not isinstance(lb, list):  # 作用:来判断一个对象是否是一个已知的类型。 其第一个参数(object)为对象,第二个参数(type)为类型名,若对象的类型与参数二的类型相同则返回True
        lb = [lb] * dim  # 生成[100,100,.....100]30个
    if not isinstance(ub, list):
        ub = [ub] * dim
 
    #========初始化所有狼的位置===================
    Positions = numpy.zeros((SearchAgents_no, dim))
    for i in range(dim):  # 形成5*30个数[-100,100)以内
        Positions[:, i] = numpy.random.uniform(0, 1, SearchAgents_no) * (ub[i] - lb[i]) + lb[
            i]  # 形成[5个0-1的数]*100-(-100)-100
    Convergence_curve = numpy.zeros(Max_iter)
 
    #========迭代寻优=====================
    for l in range(0, Max_iter):  # 迭代1000
        for i in range(0, SearchAgents_no):  # 5
            #====返回超出搜索空间边界的搜索代理====
            for j in range(dim):  # 30
                Positions[i, j] = numpy.clip(Positions[i, j], lb[j], ub[
                    j])  # clip这个函数将将数组中的元素限制在a_min(-100), a_max(100)之间,大于a_max的就使得它等于 a_max,小于a_min,的就使得它等于a_min。
 
        
 
        #===========以上的循环里,Alpha、Beta、Delta===========
        a = 2 - l * ((2) / Max_iter);  #   a从2线性减少到0
 
        for i in range(0, SearchAgents_no):
            for j in range(0, dim):
                r1 = random.random()  # r1 is a random number in [0,1]主要生成一个0-1的随机浮点数。
                r2 = random.random()  # r2 is a random number in [0,1]
 
                A1 = 2 * a * r1 - a;  # Equation (3.3)
                C1 = 2 * r2;  # Equation (3.4)
                # D_alpha表示候选狼与Alpha狼的距离
                D_alpha = abs(C1 * Alpha_pos[j] - Positions[
                    i, j]);  # abs() 函数返回数字的绝对值。Alpha_pos[j]表示Alpha位置,Positions[i,j])候选灰狼所在位置
                X1 = Alpha_pos[j] - A1 * D_alpha;  # X1表示根据alpha得出的下一代灰狼位置向量
 
                r1 = random.random()
                r2 = random.random()
 
                A2 = 2 * a * r1 - a;  #
                C2 = 2 * r2;
 
                D_beta = abs(C2 * Beta_pos[j] - Positions[i, j]);
                X2 = Beta_pos[j] - A2 * D_beta;
 
                r1 = random.random()
                r2 = random.random()
 
                A3 = 2 * a * r1 - a;
                C3 = 2 * r2;
 
                D_delta = abs(C3 * Delta_pos[j] - Positions[i, j]);
                X3 = Delta_pos[j] - A3 * D_delta;
 
                Positions[i, j] = (X1 + X2 + X3) / 3  # 候选狼的位置更新为根据Alpha、Beta、Delta得出的下一代灰狼地址。
 
        Convergence_curve[l] = Alpha_score;
 
        if (l % 1 == 0):
            print(['迭代次数为' + str(l) + ' 的迭代结果' + str(Alpha_score)]);  # 每一次的迭代结果
 
#========函数==========
def F1(x):
    s=numpy.sum(x**2);
    return s
 
#===========主程序================
func_details = ['F1', -100, 100, 30]
function_name = func_details[0]
Max_iter = 1000#迭代次数
lb = -100#下界
ub = 100#上届
dim = 30#狼的寻值范围
SearchAgents_no = 5#寻值的狼的数量
x = GWO(F1, lb, ub, dim, SearchAgents_no, Max_iter)

Python&Matlab实现灰狼优化算法的示例代码

5 Matlab实现

% 主程序 GWO
clear
close all
clc
 
%%完整代码见微信公众号:电力系统与算法之美
 
%输入关键字:灰狼算法
 
SearchAgents_no = 30 ; % 种群规模
dim = 10 ; % 粒子维度
Max_iter = 1000 ; % 迭代次数
ub = 5 ;
lb = -5 ;
 
%% 初始化三匹头狼的位置
Alpha_pos=zeros(1,dim);
Alpha_score=inf; 
 
Beta_pos=zeros(1,dim);
Beta_score=inf; 
 
Delta_pos=zeros(1,dim);
Delta_score=inf; 
 
 
 
Convergence_curve = zeros(Max_iter,1);
 
%% 开始循环
for l=1:Max_iter
    for i=1:size(Positions,1)  
        
       %% 返回超出搜索空间边界的搜索代理
        Flag4ub=Positions(i,:)>ub;
        Flag4lb=Positions(i,:)<lb;
        Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;               
        
        %% 计算每个搜索代理的目标函数
        fitness=sum(Positions(i,:).^2);
        
        %% 更新 Alpha, Beta, and Delta
        if fitness<Alpha_score 
            Alpha_score=fitness; % Update alpha
            Alpha_pos=Positions(i,:);
        end
        
        if fitness>Alpha_score && fitness<Beta_score 
            Beta_score=fitness; % Update beta
            Beta_pos=Positions(i,:);
        end
        
        if fitness>Alpha_score && fitness>Beta_score && fitness<Delta_score 
            Delta_score=fitness; % Update delta
            Delta_pos=Positions(i,:);
        end
    end
    
    
    a=2-l*((2)/Max_iter); % a decreases linearly fron 2 to 0
    
    %% 更新搜索代理的位置,包括omegas
    for i=1:size(Positions,1)
        for j=1:size(Positions,2)     
                       
            r1=rand(); % r1 is a random number in [0,1]
            r2=rand(); % r2 is a random number in [0,1]
            
            A1=2*a*r1-a; % Equation (3.3)
            C1=2*r2; % Equation (3.4)
            
            D_alpha=abs(C1*Alpha_pos(j)-Positions(i,j)); % Equation (3.5)-part 1
            X1=Alpha_pos(j)-A1*D_alpha; % Equation (3.6)-part 1
                       
            r1=rand();
            r2=rand();
            
            A2=2*a*r1-a; % Equation (3.3)
            C2=2*r2; % Equation (3.4)
            
            D_beta=abs(C2*Beta_pos(j)-Positions(i,j)); % Equation (3.5)-part 2
            X2=Beta_pos(j)-A2*D_beta; % Equation (3.6)-part 2       
            
            r1=rand();
            r2=rand(); 
            
            A3=2*a*r1-a; % Equation (3.3)
            C3=2*r2; % Equation (3.4)
            
            D_delta=abs(C3*Delta_pos(j)-Positions(i,j)); % Equation (3.5)-part 3
            X3=Delta_pos(j)-A3*D_delta; % Equation (3.5)-part 3             
            
            Positions(i,j)=(X1+X2+X3)/3;% Equation (3.7)
            
        end
    end
  
    Convergence_curve(l)=Alpha_score;
    disp(['Iteration = ' num2str(l)  ', Evaluations = ' num2str(Alpha_score)]);
 
end
%========可视化==============
figure('unit','normalize','Position',[0.3,0.35,0.4,0.35],'color',[1 1 1],'toolbar','none')
%% 目标空间
subplot(1,2,1);
x = -5:0.1:5;y=x;
L=length(x);
f=zeros(L,L);
for i=1:L
    for j=1:L
       f(i,j) = x(i)^2+y(j)^2;
    end
end
surfc(x,y,f,'LineStyle','none');
xlabel('x_1');
ylabel('x_2');
zlabel('F')
title('Objective space')
%% 狼群算法 
subplot(1,2,2);
semilogy(Convergence_curve,'Color','r','linewidth',1.5)
title('Convergence_curve')
xlabel('Iteration');
ylabel('Best score obtained so far');
 
axis tight
grid on
box on
legend('GWO')
display(['The best solution obtained by GWO is : ', num2str(Alpha_pos)]);
display(['The best optimal value of the objective funciton found by GWO is : ', num2str(Alpha_score)]);

Python&Matlab实现灰狼优化算法的示例代码

Python&Matlab实现灰狼优化算法的示例代码

以上就是Python&Matlab实现灰狼优化算法的示例代码的详细内容,更多关于Python Matlab灰狼优化算法的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
利用Python绘制MySQL数据图实现数据可视化
Mar 30 Python
在Python下使用Txt2Html实现网页过滤代理的教程
Apr 11 Python
python数据类型_元组、字典常用操作方法(介绍)
May 30 Python
Tornado协程在python2.7如何返回值(实现方法)
Jun 22 Python
详解python中 os._exit() 和 sys.exit(), exit(0)和exit(1) 的用法和区别
Jun 23 Python
Sanic框架蓝图用法实例分析
Jul 17 Python
对python mayavi三维绘图的实现详解
Jan 08 Python
使用python实现简单五子棋游戏
Jun 18 Python
基于python判断目录或者文件代码实例
Nov 29 Python
开启Django博客的RSS功能的实现方法
Feb 17 Python
在pytorch中实现只让指定变量向后传播梯度
Feb 29 Python
python读取pdf格式文档的实现代码
Apr 01 Python
Python学习之时间包使用教程详解
Mar 21 #Python
Python数据结构之队列详解
Python学习之os包使用教程详解
分享几种python 变量合并方法
Mar 20 #Python
python 使用tkinter与messagebox写界面和弹窗
Mar 20 #Python
python中的sys模块和os模块
Mar 20 #Python
python_tkinter事件类型详情
Mar 20 #Python
You might like
一步一步学习PHP(1) php开发环境配置
2010/02/15 PHP
PHP中的string类型使用说明
2010/07/27 PHP
如何使用PHP计算上一个月的今天
2013/05/23 PHP
PHP获取中英混合字符串长度的方法
2014/06/07 PHP
PHP实现显示照片exif信息的方法
2014/07/11 PHP
php中随机函数mt_rand()与rand()性能对比分析
2014/12/01 PHP
php设置静态内容缓存时间的方法
2014/12/01 PHP
laravel如何开启跨域功能示例详解
2017/08/31 PHP
javascript 对象的定义方法
2007/01/10 Javascript
页面中body onload 和 window.onload 冲突的问题的解决
2009/07/01 Javascript
js中传递特殊字符(+,&amp;)的方法
2014/01/16 Javascript
Javascript 按位与运算符 (&amp;)使用介绍
2014/02/04 Javascript
使用js检测浏览器是否支持html5中的video标签的方法
2014/03/12 Javascript
jQuery实现鼠标经过事件的延时处理效果
2020/08/20 Javascript
Bootstrap modal使用及点击外部不消失的解决方法
2016/12/13 Javascript
vue-cli项目如何使用vue-resource获取本地的json数据(模拟服务端返回数据)
2017/08/04 Javascript
vue小白入门教程
2018/04/02 Javascript
vue地区选择组件教程详解
2018/05/04 Javascript
React学习笔记之高阶组件应用
2018/06/02 Javascript
Python和perl实现批量对目录下电子书文件重命名的代码分享
2014/11/21 Python
Python对列表中的各项进行关联详解
2017/08/15 Python
对numpy中数组元素的统一赋值实例
2018/04/04 Python
解决Django Static内容不能加载显示的问题
2019/07/28 Python
Python matplotlib生成图片背景透明的示例代码
2019/08/30 Python
python 穷举指定长度的密码例子
2020/04/02 Python
jupyter notebook 增加kernel教程
2020/04/10 Python
编写类String的构造函数、析构函数和赋值函数
2012/05/29 面试题
医学生自荐信
2013/12/03 职场文书
企业承诺书怎么写
2014/05/24 职场文书
团队队名口号大全
2014/06/06 职场文书
2014光棍节大学生联谊活动方案
2014/10/10 职场文书
经理助理岗位职责
2015/02/02 职场文书
房地产项目合作意向书
2015/05/08 职场文书
起诉意见书范文
2015/05/19 职场文书
2019XX公司员工考核管理制度!
2019/08/07 职场文书
springboot 自定义配置 解决Boolean属性不生效
2022/03/18 Java/Android