Python3的进程和线程你了解吗


Posted in Python onMarch 16, 2022

1.概述

"""
基础知识:
1.多任务:操作系统可以同时运行多个任务;
2.单核CPU执行多任务:操作系统轮流让各个任务交替执行;
3.一个任务即一个进程(process),如:打开一个浏览器,即启动一个浏览器进程;
4.在一个进程内,要同时干多件事,需要同时运行多个子任务,把进程内的子任务称为"线程(Thread)";
5.每个进程至少做一件事,因此,一个进程至少有一个线程;
同时执行多线程的解决方案:
a.启动多个进程,每个进程虽然只有一个线程,但多个进程可以一块执行多个任务;
b.启动一个进程,在一个进程内启动多个线程,多个线程一块执行多个任务;
c.启动多个进程,每个进程启动多个线程;
即多任务的实现方式:
a.多进程模式;
b.多线程模式;
c.多进程+多线程模式;
"""

2.多进程

import os
print("Process (%s) start..." % os.getpid())
"""
只能在Linux/Unix/Mac上工作
pid = os.fork()
if pid == 0:
    print("I am child process (%s) and my parent is %s." % (os.getpid(), os.getppid()))
else:
    print("I (%s) just created a child process (%s)." % (os.getpid(), pid))
"""
print("Hello.")
# multiprocessing:跨平台多线程模块
# process_test.py文件,在交互下python process_test.py
from multiprocessing import Process
import os
def run_process(name):
    print("Run child process %s (%s)..." % (name, os.getpid()))
if __name__ == "__main__":
    print("Parent process %s." % os.getpid())
    p = Process(target = run_process, args = ("test",))
    print("Child process will start.")
    p.start()
    p.join()        # join()方法可以等待子进程结束后再继续往下运行,用于进程间的同步
    print("Child process end.")

 # 结果输出:
Parent process 28340.
Child process will start.
Run child process test (31152)...
Child process end.

# Pool:用进程池批量创建子进程
# process.py文件,交互下python process.py
from multiprocessing import Pool
import os, time, random
def long_time_task(name):
    print('Run task %s (%s)...' % (name, os.getpid()))
    start = time.time()
    time.sleep(random.random() * 3)
    end = time.time()
    print('Task %s runs %0.2f seconds.' % (name, (end - start)))
if __name__=='__main__':
    print('Parent process %s.' % os.getpid())
    p = Pool(4)
    for i in range(5):
        p.apply_async(long_time_task, args=(i,))
    print('Waiting for all subprocesses done...')
    p.close()
    p.join()
    print('All subprocesses done.')

# 结果输出:
Parent process 31576.
Waiting for all subprocesses done...
Run task 0 (20416)...
Run task 1 (15900)...
Run task 2 (24716)...
Run task 3 (31148)...
Task 2 runs 0.72 seconds.
Run task 4 (24716)...
Task 4 runs 1.03 seconds.
Task 3 runs 1.82 seconds.
Task 1 runs 2.73 seconds.
Task 0 runs 2.82 seconds.
All subprocesses done.

3.子进程

# subprocess模块:启动一个子进程,控制其输入和输出
# subprocess_test.py文件,注:文件名不要和模块名相同,否则报错
import subprocess
print("$ nslookup www.python.org")
r = subprocess.call(["nslookup", "www.python.org"])
print("Exit code:", r)

 # 结果输出:
$ nslookup www.python.org
服务器:  cache-a.guangzhou.gd.cn
Address:  202.96.128.86
非权威应答:
名称:    www.python.org
Addresses:  2a04:4e42:1a::223
          151.101.72.223
Exit code: 0

# 子进程需要输入,通过communicate()方法
import subprocess
print("$ nslookup")
p = subprocess.Popen(["nslookup"], stdin = subprocess.PIPE, stdout = subprocess.PIPE, stderr = subprocess.PIPE)
output, err = p.communicate(b"set q = mx\npython.org\nexit\n")
print(output.decode("gbk"))
print("Exit code:", p.returncode)

# 结果输出:
$ nslookup
默认服务器:  cache-a.guangzhou.gd.cn
Address:  202.96.128.86
> Unrecognized command: set q = mx
> 服务器:  cache-a.guangzhou.gd.cn
Address:  202.96.128.86
名称:    python.org
Address:  138.197.63.241

Exit code: 0

4.进程间通信

# 在父进程中创建两个子进程,一个往Queue里写数据,一个从Queue里读数据
# queue_test.py文件,交互下python queue_test.py
from multiprocessing import Process, Queue
import os, time, random
def write(q):
    print("Process to write:%s" % os.getpid())
    for value in ["W", "I", "L", "L", "A", "R", "D"]:
        print("Put %s to queue..." % value)
        q.put(value)
        time.sleep(random.random())
def read(q):
    print("Process to read:%s" % os.getpid())
    while True:
        value = q.get(True)
        print("Get %s from queue." % value)
if __name__ == "__main__":
    # 父进程创建Queue,并传给各个子进程
    q = Queue()
    pw = Process(target = write, args = (q,))
    pr = Process(target = read, args = (q,))
    # 启动子进程pw,写入
    pw.start()
    # 启动子进程pr,读取
    pr.start()
    # 等待pw结束
    pw.join()
    # pr进程是死循环,无法等待其结束,需要强行终止
    pr.terminate()

# 结果输出:
Process to write:15720
Process to read:21524
Put W to queue...
Get W from queue.
Put I to queue...
Get I from queue.
Put L to queue...
Get L from queue.
Put L to queue...
Get L from queue.
Put A to queue...
Get A from queue.
Put R to queue...
Get R from queue.
Put D to queue...
Get D from queue.

5.多线程

# 线程库:_thread和threading
# 启动一个线程:即把一个函数传入并创建一个Thread实例,然后调用start()开始执行
# 任何进程默认启动一个线程,该线程称为主线程,主线程可以启动新的线程
# current_thread()函数:返回当前线程的实例;
# 主线程实例名字:MainThread;
# 子线程名字的创建时指定,如果不指定,则自动给线程命名为Thread-1、Thread-2...
import time, threading
def loop():
    print("Thread %s is running..." % threading.current_thread().name)
    n = 0
    while n < 5:
        n = n + 1
        print("Thread %s >>> %s" % (threading.current_thread().name, n))
        time.sleep(1)
    print("Thread %s ended." % threading.current_thread().name)
print("Thread %s is running..." % threading.current_thread().name)
thread1 = threading.Thread(target = loop, name = "LoopThread")
thread1.start()
thread1.join()
print("Thread %s ended." % threading.current_thread().name)

# 结果输出:
Thread MainThread is running...
Thread LoopThread is running...
Thread LoopThread >>> 1
Thread LoopThread >>> 2
Thread LoopThread >>> 3
Thread LoopThread >>> 4
Thread LoopThread >>> 5
Thread LoopThread ended.
Thread MainThread ended.

6.Lock

# 多进程:同一个变量,各自有一份拷贝存在于每个进程中,互不影响;
# 多线程:所有变量由所有线程共享,任何一个变量可以被任何一个线程修改;
# 多线程同时操作一个变量
# 多运行几次,发现结果不为0
import time, threading
balance = 0
def change_it(n):
    global balance
    balance = balance + n
    balance = balance - n
def run_thread(n):
    # 线程交替执行,balance结果不一定为0
    for i in range(2000000):
        change_it(n)
thread1 = threading.Thread(target = run_thread, args = (5,))
thread2 = threading.Thread(target = run_thread, args = (8,))
thread1.start()
thread2.start()
thread1.join()
thread2.join()
print(balance)
# 结果输出:
# 5(各自不同)
# 确保balance计算正确,需要给change_it()上一把锁
# 当线程开始执行change_it()时,该线程获得锁,其他线程不能同时执行change_it(),
# 只能等待,直到锁被释放,获得该锁后才能改;
# 通过threading.Lock()创建锁
import time, threading
balance = 0
lock = threading.Lock()
def change_it(n):
    global balance
    balance = balance + n
    balance = balance - n
def run_thread(n):
    for i in range(2000000):
        lock.acquire()
        try:
            change_it(n)
        finally:
            # 释放锁
            lock.release()
thread1 = threading.Thread(target = run_thread, args = (5,))
thread2 = threading.Thread(target = run_thread, args = (8,))
thread1.start()
thread2.start()
thread1.join()
thread2.join()
print(balance)
# 结果输出:
# 0

7.ThreadLocal

# 多线程环境下,每个线程有自己的数据;
# 一个线程使用自己的局部变量比使用全局变量好;
import threading
# 创建全局ThreadLocal对象
local_school = threading.local()
def process_student():
    # 获取当前线程关联的student
    std = local_school.student
    print("Hello,%s (in %s)" % (std, threading.current_thread().name))
def process_thread(name):
    # 绑定ThreadLocal的student
    local_school.student = name
    process_student()
thread1 = threading.Thread(target = process_thread, args = ("Willard",), name = "Thread-1")
thread2 = threading.Thread(target = process_thread, args = ("WenYu",), name = "Thread-2")
thread1.start()
thread2.start()
thread1.join()
thread2.join()

# 结果输出:
# Hello,Willard (in Thread-1)
# Hello,WenYu (in Thread-2)

8.进程VS线程

# 进程和线程优缺点:
# 1.要实现多任务,会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,
# 在多任务环境下,通常是一个Master,多个Worker;
#     a.如果使用多进程实现Master-Worker,主进程即Master,其他进程即Worker;
#     b.如果使用多线程实现Master-Worker,主线程即Master,其他线程即Worker;
# 2.多进程优点:稳定性高,一个子进程崩溃不会影响主进程和其他子进程;
# 3.多进程缺点:创建进程的代价大,操作系统能同时运行的进程数有限;
# 4.多线程缺点:任何一个线程崩溃,可能直接造成整个进程崩溃;
# 线程切换:
# 1.依次完成任务的方式称为单任务模型,或批处理任务模型;
# 2.任务1先做n分钟,切换到任务2做n分钟,再切换到任务3做n分钟,依此类推,称为多任务模型;
# 计算密集型 VS IO密集型
# 1.计算密集型任务:要进行大量的计算,消耗CPU资源,如:对视频进行高清解码等;
# 2.IO密集型任务:涉及到网络、磁盘IO的任务,均为IO密集型任务;
# 3.IO密集型任务消耗CPU少,大部分时间在等待IO操作完成;
# 异步IO
# 1.事件驱动模型:用单进程单线程模型来执行多任务;
# 2.Python语言中,单线程的异步编程模型称为协程;

9.分布式进程

"""
实例:
有一个通过Queue通信的多进程程序在同一机器上运行,但现在处理任务的进程任务繁重,
希望把发送任务的进程和处理任务的进程发布到两台机器上;
"""
# task_master_test.py
# 交互环境中:python task_master_test.py
import random, time, queue
from multiprocessing.managers import BaseManager
# 发送任务的队列
task_queue = queue.Queue()
# 接收结果的队列
result_queue = queue.Queue()
def return_task_queue():
    global task_queue
    return task_queue
def return_result_queue():
    global task_queue
    return task_queue
# 从BaseManager继承的QueueManager
class QueueManager(BaseManager):
    pass
if __name__ == "__main__":
    # 把两个Queue注册到网络上,callable参数关联Queue对象
    QueueManager.register("get_task_queue", callable = return_task_queue)
    QueueManager.register("get_result_queue", callable = return_result_queue)
    # 绑定端口5000,设置验证码"Willard"
    manager = QueueManager(address = ("127.0.0.1", 5000), authkey = b"Willard")
    # 启动Queue
    manager.start()
    # 获得通过网络访问的Queue对象
    task = manager.get_task_queue()
    result = manager.get_result_queue()
    # 放任务进去
    for i in range(10):
        n = random.randint(0, 10000)
        print("Put task %d..." % n)
        task.put(n)
    # 从result队列读取结果
    print("Try get results...")
    for i in range(10):
        r = result.get(timeout = 10)
        print("Result:%s" % r)
    # 关闭
    manager.shutdown()
    print("Master Exit.")
# task_worker_test.py文件
# 交互环境python task_worker_test.py
import time, sys, queue
from multiprocessing.managers import BaseManager
# 创建QueueManager
class QueueManager(BaseManager):
    pass
QueueManager.register("get_task_queue")
QueueManager.register("get_result_queue")
# 连接到服务器
server_address = "127.0.0.1"
print("Connect to server %s..." % server_address)
# 端口和验证码
m = QueueManager(address = (server_address, 5000), authkey = b"Willard")
# 网络连接
m.connect()
# 获取Queue对象
task = m.get_task_queue()
result = m.get_result_queue()
# 从task队列取任务,把结果写入result队列
for i in range(10):
    try:
        n = task.get(timeout = 1)
        print("Run task %d * %d..." % (n, n))
        r = "%d * %d = %d" % (n, n, n * n)
        time.sleep(1)
        result.put(r)
    except Queue.Empty:
        print("Task queue is empty.")
print("Worker Exit.")

总结

本篇文章就到这里了,希望能够给你带来帮助,也希望您能够多多关注三水点靠木的更多内容!     

Python 相关文章推荐
python深度优先搜索和广度优先搜索
Feb 07 Python
python 列表,数组,矩阵两两转换tolist()的实例
Apr 04 Python
PyQt5每天必学之拖放事件
Aug 27 Python
Python3.7中安装openCV库的方法
Jul 11 Python
Python3中关于cookie的创建与保存
Oct 21 Python
Python实现DDos攻击实例详解
Feb 02 Python
python itchat实现调用微信接口的第三方模块方法
Jun 11 Python
Python箱型图绘制与特征值获取过程解析
Oct 22 Python
Python 私有化操作实例分析
Nov 21 Python
基于python实现matlab filter函数过程详解
Jun 08 Python
PyCharm 2020.2.2 x64 下载并安装的详细教程
Oct 15 Python
python创建字典及相关管理操作
Apr 13 Python
python的列表生成式,生成器和generator对象你了解吗
Mar 16 #Python
bat批处理之字符串操作的实现
Mar 16 #Python
一起来学习Python的元组和列表
Mar 13 #Python
python自动化测试之Selenium详解
python数字类型和占位符详情
Mar 13 #Python
Python+Selenium自动化环境搭建与操作基础详解
Python+Selenium实现读取网易邮箱验证码
Mar 13 #Python
You might like
攻克CakePHP系列二 表单数据显示
2008/10/22 PHP
一组PHP可逆加密解密算法实例代码
2014/01/21 PHP
Javascript select控件操作大全(新增、修改、删除、选中、清空、判断存在等)
2008/12/19 Javascript
js 异步处理进度条
2010/04/01 Javascript
改变隐藏的input中value的值代码
2013/12/30 Javascript
Jquery Ajax解析XML数据(同步及异步调用)简单实例
2014/02/12 Javascript
jquery库或JS文件在eclipse下报错问题解决方法
2014/04/17 Javascript
jquery实现对联广告的方法
2015/02/05 Javascript
JS根据浏览器窗口大小实时动态改变网页文字大小的方法
2016/02/25 Javascript
JavaScript模拟数组合并concat
2016/03/06 Javascript
JS实现数组按升序及降序排列的方法
2017/04/26 Javascript
基于AngularJS实现的工资计算器实例
2017/06/16 Javascript
移动前端图片压缩上传的实例
2017/12/06 Javascript
Vuex提升学习篇
2018/01/11 Javascript
浅谈Vue SSR中的Bundle的具有使用
2019/11/21 Javascript
jquery检测上传文件大小示例
2020/04/26 jQuery
Vue toFixed保留两位小数的3种方式
2020/10/23 Javascript
[01:50]《我与DAC》之玩家:iG夺冠时的那面红旗
2018/03/29 DOTA
Python多线程编程简单介绍
2015/04/13 Python
python实现根据主机名字获得所有ip地址的方法
2015/06/28 Python
Django框架中数据的连锁查询和限制返回数据的方法
2015/07/17 Python
Python 实现数据库更新脚本的生成方法
2017/07/09 Python
今天 平安夜 Python 送你一顶圣诞帽 @微信官方
2017/12/25 Python
答题辅助python代码实现
2018/01/16 Python
Python3利用Dlib19.7实现摄像头人脸识别的方法
2018/05/11 Python
Python实现KNN(K-近邻)算法的示例代码
2019/03/05 Python
Django框架模板语言实例小结【变量,标签,过滤器,继承,html转义】
2019/05/23 Python
python实现的爬取电影下载链接功能示例
2019/08/26 Python
Python enumerate() 函数如何实现索引功能
2020/06/29 Python
keras的ImageDataGenerator和flow()的用法说明
2020/07/03 Python
如何定义一个可复用的服务
2014/09/30 面试题
竞争上岗实施方案
2014/03/21 职场文书
初一新生军训方案
2014/05/22 职场文书
《云雀的心愿》教学反思
2016/02/23 职场文书
元素水平垂直居中的方式
2021/03/31 HTML / CSS
nginx 配置指令之location使用详解
2022/05/25 Servers