opencv 图像轮廓的实现示例


Posted in Python onJuly 08, 2020

图像轮廓

Contours:轮廓
轮廓是将没有连着一起的边缘连着一起。
边缘检测检测出边缘,边缘有些未连接在一起。

opencv 图像轮廓的实现示例

注意问题
1.对象为二值图像,首先进行阈值分割或者边缘检测。
2.查找轮廓需要更改原始图像,通常使用原始图像的一份进行拷贝。
3.在opencv里,是从黑色背景里找白色。因此对象必须是白色,背景为黑色。

方法

  • cv2.findContours()
  • cv2.drawContours()

通过cv2.findContours() 查找轮廓在哪里,再通过 cv2.drawContours()将查找的轮廓绘制出来。

contours,hierarchy=cv2.findContours(image,mode,method)
contours:轮廓
hierarchy:图像的拓扑信息(轮廓层次)(存储上一个轮廓,父轮廓…)
image:原始图像
mode:轮廓检索方式
method:轮廓的近似方法

opencv 图像轮廓的实现示例

opencv 图像轮廓的实现示例

r=cv2.drawContours(image, contours, contourIdx, color[, thickness])

r:目标图像
image:原始图像
contours: 所有的输入轮廓边缘数组
contourIdx :需要绘制的边缘索引,如果全部绘制为-1。如果有多个目标,可以绘制第一个目标0,第二个目标1,第三个目标2.。。
color:绘制的颜色,为BGR格式的SCalar
thickness:可选,绘制的密度,即轮廓的画笔粗细

import cv2
import numpy as np
o = cv2.imread('lena256.bmp')
gray = cv2.cvtColor(o,cv2.COLOR_BGR2GRAY)#BGR-灰度
ret, binary = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)#二值图像
contours, hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
co=o.copy()#对原始图像进行绘制
r=cv2.drawContours(co,contours,-1,(0,127,127),4)#co为复制图像,轮廓会修改原始图像
cv2.imshow("original",o)
cv2.imshow("contours",r)
cv2.waitKey()

opencv 图像轮廓的实现示例

cv2.cvtColor(input_image, flag)用于颜色空间转换。
input_image:需要转换的图像
flag:转换类型
cv2.COLOR_BGR2GRAY : BGR -灰度
cv2.COLOR_BGR2RGB:BGR-RGB
cv2.COLOR_BGR2HSV:BGR-HSV

最小外接圆

函数cv2.minEnclosingCircle() 可以帮我们找到一个对象的外切圆。它是所有能够包括对象的圆中面积最小的一个。

案例:现有下面这样一张图片,要求将图片中心的花朵标记出来。

opencv 图像轮廓的实现示例

代码:

import numpy as np
import cv2 as cv

img=cv.imread("image.jpg",0)

#为了显示方便,这里将图片进行缩放
x,y=img.shape
img=cv.resize(img,(y//2,x//2))
#将图片二值化,由于前景物体是黑色的,因此在二值化时采用cv.THRESH_TOZERO_INV这种方式
ret,thresh=cv.threshold(img,127,255,cv.THRESH_TOZERO_INV)
#寻找图片中的轮廓,mode=cv.RETR_EXTERNAL,这是为了寻找最外层的轮廓
im,contour,hierarchy=cv.findContours(thresh,cv.RETR_EXTERNAL,cv.CHAIN_APPROX_SIMPLE)

#cv.minEnclosingCircle函数的参数要求是ndarray类型,因此这里将找到的
# 轮廓中的所有的点存放在一个列表中,然后使用这个列表创建数组
point_list=[]
for i in contour:
  for j in i:
    point_list.append(j[0])
point_array=np.array(point_list)

#使用最小外接圆函数,返回值为这个圆的圆心坐标和圆半径长度
(x,y),radius=cv.minEnclosingCircle(point_array)

#图片上的坐标均为整数,圆的半径也要求是整数,因此将它们强制转换为int类型
center=(int(x),int(y))
color=cv.cvtColor(img,cv.COLOR_GRAY2BGR)
color=cv.circle(color,center,radius=int(radius),color=(0,0,255),thickness=2)
#显示图片
cv.imshow("color",color)
cv.waitKey(0)
cv.destroyAllWindows()

程序结果:

opencv 图像轮廓的实现示例

凸包

凸包与轮廓近似相似,但不同,虽然有些情况下它们给出的结果是一样的。函数cv2.convexHull() 可以用来检测一个曲线是否具有凸性缺陷,并能纠正缺陷。一般来说,凸性曲线总是凸出来的,至少是平的。在opencv中使用函数cv.convexhull来寻找轮廓的凸包,该函数的定义为:

hull=cv.convexHull( points[, hull[, clockwise[, returnPoints]]])

这个函数的参数如下:

Points:我们需要传入的轮廓

Hull:输出,通常不需要

clockwise: 取向标志,如果为True,凸包的方向是顺时针方向,否则为逆时针方向;

returnPoints: 默认为True. 它会返回凸包上点的坐标。如果设置为False,就会返回与凸包点对应的轮廓上的点。

还是上面的这副图片,我们对上面的代码稍加修改,可以得到凸包的形状,代码如下:

import numpy as np
import cv2 as cv

img=cv.imread("image.jpg",0)

#为了显示方便,这里将图片进行缩放
x,y=img.shape
img=cv.resize(img,(y//2,x//2))
#将图片二值化,由于前景物体是黑色的,因此在二值化时采用cv.THRESH_TOZERO_INV这种方式
ret,thresh=cv.threshold(img,127,255,cv.THRESH_TOZERO_INV)
#寻找图片中的轮廓,mode=cv.RETR_EXTERNAL,这是为了寻找最外层的轮廓
im,contour,hierarchy=cv.findContours(thresh,cv.RETR_EXTERNAL,cv.CHAIN_APPROX_SIMPLE)

#cv.minEnclosingCircle函数的参数要求是ndarray类型,因此这里将找到的
# 轮廓中的所有的点存放在一个列表中,然后使用这个列表创建数组
point_list=[]
for i in contour:
  for j in i:
    point_list.append(j[0])
point_array=np.array(point_list)

#寻找凸包,返回值是凸包上的点
hull=cv.convexHull(point_array,returnPoints=True)
color=cv.cvtColor(img,cv.COLOR_GRAY2BGR)

#将凸包绘制出来,需要注意的是:这里需要将凸包上点的坐标写成一个
#列表传入函数cv.ploylines,否则绘制出来的只是凸包上的一系列点
color=cv.polylines(color,[hull],True,(0,0,255),2)
#显示图片
cv.imshow("color",color)
cv.waitKey(0)
cv.destroyAllWindows()

程序运行结果为:

opencv 图像轮廓的实现示例

图像掩模和像素点

有时我们需要构成对象的所有像素点,我们可以将图像的所有轮廓提取出来,然后使用函数cv.drawContours()将轮廓内的区域填充为指定的颜色。然后使用cv.findNonZeros()函数将非零像素点的坐标提取出来,这样就得到了构成对象的像素点。我们还是在上面的图片上进行操作,代码如下:

import numpy as np
import cv2 as cv

img=cv.imread("image.jpg",0)

#为了显示方便,这里将图片进行缩放
x,y=img.shape
img=cv.resize(img,(y//2,x//2))
#将图片二值化,由于前景物体是黑色的,因此在二值化时采用cv.THRESH_TOZERO_INV这种方式
ret,thresh=cv.threshold(img,127,255,cv.THRESH_TOZERO_INV)
#寻找图片中的轮廓,mode=cv.RETR_EXTERNAL,这是为了寻找最外层的轮廓
im,contour,hierarchy=cv.findContours(thresh,cv.RETR_EXTERNAL,cv.CHAIN_APPROX_SIMPLE)
#创建一个填充轮廓内像素点的画板,背景颜色为黑色,这里我们使用numpy创建一个全零的二维数组
mask=np.zeros(img.shape,dtype=np.uint8)
#将参数thickness设置为-1,这样cv.drawContours函数就会将轮廓内的像素点填充为指定的颜色
mask=cv.drawContours(mask,contour,contourIdx=-1,color=(255,255,255),thickness=-1)

#寻找mask内非零像素点,将其存放为一个numpy数组
NonZeroPoints=np.array(cv.findNonZero(mask))
#形状变换,将其改变为一个二维数组,数组的每一行存放一个非零像素点的坐标
NonZeroPoints=NonZeroPoints.reshape((-1,2))
#验证我们提取出来的像素点坐标是否正确,我们使用变量
#column和row分别存放非零像素点在图像中坐标的列数和行数
column=NonZeroPoints[:,0]
row=NonZeroPoints[:,1]
#在新的画板上将这些点绘制出来,将这些坐标对应的像素点的值设为255
mask1=np.zeros(img.shape)
mask1[row,column]=255
#显示结果
cv.imshow("mask",mask)
cv.imshow("mask1",mask1)
cv.waitKey(0)
cv.destroyAllWindows()

程序运行结果:

opencv 图像轮廓的实现示例

通过上面两幅图的对比结果,我们可以看到:对象的组成像素点被正确地提取出来了。

到此这篇关于opencv 图像轮廓的实现示例的文章就介绍到这了,更多相关opencv 图像轮廓内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python fabric实现远程操作和部署示例
Mar 25 Python
Windows下用py2exe将Python程序打包成exe程序的教程
Apr 08 Python
python基于ID3思想的决策树
Jan 03 Python
Python中的默认参数实例分析
Jan 29 Python
python实现NB-IoT模块远程控制
Jun 20 Python
python实现flappy bird小游戏
Dec 24 Python
Python列表与元组的异同详解
Jul 02 Python
python实现电子书翻页小程序
Jul 23 Python
Python绘图实现显示中文
Dec 04 Python
Python3.6安装卸载、执行命令、执行py文件的方法详解
Feb 20 Python
django 将自带的数据库sqlite3改成mysql实例
Jul 09 Python
Python答题卡识别并给出分数的实现代码
Jun 22 Python
opencv 图像滤波(均值,方框,高斯,中值)
Jul 08 #Python
用opencv给图片换背景色的示例代码
Jul 08 #Python
python文件及目录操作代码汇总
Jul 08 #Python
Python预测2020高考分数和录取情况
Jul 08 #Python
Python venv虚拟环境配置过程解析
Jul 08 #Python
Python如何实现自带HTTP文件传输服务
Jul 08 #Python
Python第三方包PrettyTable安装及用法解析
Jul 08 #Python
You might like
收音机史话 - 1960年代前后的DIY
2021/03/02 无线电
PHP foreach循环使用详解与实例代码
2010/05/08 PHP
Thinkphp中volist标签mod控制一定记录的换行BUG解决方法
2014/11/04 PHP
thinkphp的URL路由规则与配置实例
2014/11/26 PHP
PHP遍历XML文档所有节点的方法
2015/03/12 PHP
php微信支付接口开发程序
2016/08/02 PHP
Prototype 学习 Prototype对象
2009/07/12 Javascript
jquery easyui的tabs使用时的问题
2010/03/23 Javascript
javascript学习笔记(九)javascript中的原型(prototype)及原型链的继承方式
2011/04/12 Javascript
jquery 字符串切割函数substring的用法说明
2014/02/11 Javascript
JavaScript中字符串拼接的基本方法
2015/07/07 Javascript
基于BootStrap Metronic开发框架经验小结【六】对话框及提示框的处理和优化
2016/05/12 Javascript
Bootstrap3制作搜索框样式的方法
2016/07/11 Javascript
AngularJS入门之动画
2016/07/27 Javascript
Vue的路由及路由钩子函数的实现
2019/07/02 Javascript
如何在Vue.JS中使用图标组件
2020/08/04 Javascript
bootstrap-closable-tab可实现关闭的tab标签页插件
2020/08/09 Javascript
[40:29]2018DOTA2亚洲邀请赛 4.7总决赛 LGD vs Mineski 第一场
2018/04/10 DOTA
[47:42]Fnatic vs Liquid 2018国际邀请赛小组赛BO2 第一场 8.16
2018/08/17 DOTA
Python中多线程及程序锁浅析
2015/01/21 Python
Python程序中使用SQLAlchemy时出现乱码的解决方案
2015/04/24 Python
Django 前后台的数据传递的方法
2017/08/08 Python
python TCP Socket的粘包和分包的处理详解
2018/02/09 Python
Python基于Flask框架配置依赖包信息的项目迁移部署
2018/03/02 Python
Django Admin实现三级联动的示例代码(省市区)
2018/06/22 Python
借助Paramiko通过Python实现linux远程登陆及sftp的操作
2020/03/16 Python
浅谈keras中的batch_dot,dot方法和TensorFlow的matmul
2020/06/18 Python
eBay美国官网:eBay.com
2020/10/24 全球购物
后勤部长岗位职责
2013/12/14 职场文书
家长给老师的道歉信
2014/01/13 职场文书
护士求职自荐信范文
2014/03/19 职场文书
学习群众路线的心得体会
2014/11/05 职场文书
2014年工作总结及2015工作计划
2014/12/12 职场文书
Go 语言结构实例分析
2021/07/04 Golang
详解Oracle数据库中自带的所有表结构(sql代码)
2021/11/20 Oracle
delete in子查询不走索引问题分析
2022/07/07 MySQL