opencv 图像轮廓的实现示例


Posted in Python onJuly 08, 2020

图像轮廓

Contours:轮廓
轮廓是将没有连着一起的边缘连着一起。
边缘检测检测出边缘,边缘有些未连接在一起。

opencv 图像轮廓的实现示例

注意问题
1.对象为二值图像,首先进行阈值分割或者边缘检测。
2.查找轮廓需要更改原始图像,通常使用原始图像的一份进行拷贝。
3.在opencv里,是从黑色背景里找白色。因此对象必须是白色,背景为黑色。

方法

  • cv2.findContours()
  • cv2.drawContours()

通过cv2.findContours() 查找轮廓在哪里,再通过 cv2.drawContours()将查找的轮廓绘制出来。

contours,hierarchy=cv2.findContours(image,mode,method)
contours:轮廓
hierarchy:图像的拓扑信息(轮廓层次)(存储上一个轮廓,父轮廓…)
image:原始图像
mode:轮廓检索方式
method:轮廓的近似方法

opencv 图像轮廓的实现示例

opencv 图像轮廓的实现示例

r=cv2.drawContours(image, contours, contourIdx, color[, thickness])

r:目标图像
image:原始图像
contours: 所有的输入轮廓边缘数组
contourIdx :需要绘制的边缘索引,如果全部绘制为-1。如果有多个目标,可以绘制第一个目标0,第二个目标1,第三个目标2.。。
color:绘制的颜色,为BGR格式的SCalar
thickness:可选,绘制的密度,即轮廓的画笔粗细

import cv2
import numpy as np
o = cv2.imread('lena256.bmp')
gray = cv2.cvtColor(o,cv2.COLOR_BGR2GRAY)#BGR-灰度
ret, binary = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)#二值图像
contours, hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
co=o.copy()#对原始图像进行绘制
r=cv2.drawContours(co,contours,-1,(0,127,127),4)#co为复制图像,轮廓会修改原始图像
cv2.imshow("original",o)
cv2.imshow("contours",r)
cv2.waitKey()

opencv 图像轮廓的实现示例

cv2.cvtColor(input_image, flag)用于颜色空间转换。
input_image:需要转换的图像
flag:转换类型
cv2.COLOR_BGR2GRAY : BGR -灰度
cv2.COLOR_BGR2RGB:BGR-RGB
cv2.COLOR_BGR2HSV:BGR-HSV

最小外接圆

函数cv2.minEnclosingCircle() 可以帮我们找到一个对象的外切圆。它是所有能够包括对象的圆中面积最小的一个。

案例:现有下面这样一张图片,要求将图片中心的花朵标记出来。

opencv 图像轮廓的实现示例

代码:

import numpy as np
import cv2 as cv

img=cv.imread("image.jpg",0)

#为了显示方便,这里将图片进行缩放
x,y=img.shape
img=cv.resize(img,(y//2,x//2))
#将图片二值化,由于前景物体是黑色的,因此在二值化时采用cv.THRESH_TOZERO_INV这种方式
ret,thresh=cv.threshold(img,127,255,cv.THRESH_TOZERO_INV)
#寻找图片中的轮廓,mode=cv.RETR_EXTERNAL,这是为了寻找最外层的轮廓
im,contour,hierarchy=cv.findContours(thresh,cv.RETR_EXTERNAL,cv.CHAIN_APPROX_SIMPLE)

#cv.minEnclosingCircle函数的参数要求是ndarray类型,因此这里将找到的
# 轮廓中的所有的点存放在一个列表中,然后使用这个列表创建数组
point_list=[]
for i in contour:
  for j in i:
    point_list.append(j[0])
point_array=np.array(point_list)

#使用最小外接圆函数,返回值为这个圆的圆心坐标和圆半径长度
(x,y),radius=cv.minEnclosingCircle(point_array)

#图片上的坐标均为整数,圆的半径也要求是整数,因此将它们强制转换为int类型
center=(int(x),int(y))
color=cv.cvtColor(img,cv.COLOR_GRAY2BGR)
color=cv.circle(color,center,radius=int(radius),color=(0,0,255),thickness=2)
#显示图片
cv.imshow("color",color)
cv.waitKey(0)
cv.destroyAllWindows()

程序结果:

opencv 图像轮廓的实现示例

凸包

凸包与轮廓近似相似,但不同,虽然有些情况下它们给出的结果是一样的。函数cv2.convexHull() 可以用来检测一个曲线是否具有凸性缺陷,并能纠正缺陷。一般来说,凸性曲线总是凸出来的,至少是平的。在opencv中使用函数cv.convexhull来寻找轮廓的凸包,该函数的定义为:

hull=cv.convexHull( points[, hull[, clockwise[, returnPoints]]])

这个函数的参数如下:

Points:我们需要传入的轮廓

Hull:输出,通常不需要

clockwise: 取向标志,如果为True,凸包的方向是顺时针方向,否则为逆时针方向;

returnPoints: 默认为True. 它会返回凸包上点的坐标。如果设置为False,就会返回与凸包点对应的轮廓上的点。

还是上面的这副图片,我们对上面的代码稍加修改,可以得到凸包的形状,代码如下:

import numpy as np
import cv2 as cv

img=cv.imread("image.jpg",0)

#为了显示方便,这里将图片进行缩放
x,y=img.shape
img=cv.resize(img,(y//2,x//2))
#将图片二值化,由于前景物体是黑色的,因此在二值化时采用cv.THRESH_TOZERO_INV这种方式
ret,thresh=cv.threshold(img,127,255,cv.THRESH_TOZERO_INV)
#寻找图片中的轮廓,mode=cv.RETR_EXTERNAL,这是为了寻找最外层的轮廓
im,contour,hierarchy=cv.findContours(thresh,cv.RETR_EXTERNAL,cv.CHAIN_APPROX_SIMPLE)

#cv.minEnclosingCircle函数的参数要求是ndarray类型,因此这里将找到的
# 轮廓中的所有的点存放在一个列表中,然后使用这个列表创建数组
point_list=[]
for i in contour:
  for j in i:
    point_list.append(j[0])
point_array=np.array(point_list)

#寻找凸包,返回值是凸包上的点
hull=cv.convexHull(point_array,returnPoints=True)
color=cv.cvtColor(img,cv.COLOR_GRAY2BGR)

#将凸包绘制出来,需要注意的是:这里需要将凸包上点的坐标写成一个
#列表传入函数cv.ploylines,否则绘制出来的只是凸包上的一系列点
color=cv.polylines(color,[hull],True,(0,0,255),2)
#显示图片
cv.imshow("color",color)
cv.waitKey(0)
cv.destroyAllWindows()

程序运行结果为:

opencv 图像轮廓的实现示例

图像掩模和像素点

有时我们需要构成对象的所有像素点,我们可以将图像的所有轮廓提取出来,然后使用函数cv.drawContours()将轮廓内的区域填充为指定的颜色。然后使用cv.findNonZeros()函数将非零像素点的坐标提取出来,这样就得到了构成对象的像素点。我们还是在上面的图片上进行操作,代码如下:

import numpy as np
import cv2 as cv

img=cv.imread("image.jpg",0)

#为了显示方便,这里将图片进行缩放
x,y=img.shape
img=cv.resize(img,(y//2,x//2))
#将图片二值化,由于前景物体是黑色的,因此在二值化时采用cv.THRESH_TOZERO_INV这种方式
ret,thresh=cv.threshold(img,127,255,cv.THRESH_TOZERO_INV)
#寻找图片中的轮廓,mode=cv.RETR_EXTERNAL,这是为了寻找最外层的轮廓
im,contour,hierarchy=cv.findContours(thresh,cv.RETR_EXTERNAL,cv.CHAIN_APPROX_SIMPLE)
#创建一个填充轮廓内像素点的画板,背景颜色为黑色,这里我们使用numpy创建一个全零的二维数组
mask=np.zeros(img.shape,dtype=np.uint8)
#将参数thickness设置为-1,这样cv.drawContours函数就会将轮廓内的像素点填充为指定的颜色
mask=cv.drawContours(mask,contour,contourIdx=-1,color=(255,255,255),thickness=-1)

#寻找mask内非零像素点,将其存放为一个numpy数组
NonZeroPoints=np.array(cv.findNonZero(mask))
#形状变换,将其改变为一个二维数组,数组的每一行存放一个非零像素点的坐标
NonZeroPoints=NonZeroPoints.reshape((-1,2))
#验证我们提取出来的像素点坐标是否正确,我们使用变量
#column和row分别存放非零像素点在图像中坐标的列数和行数
column=NonZeroPoints[:,0]
row=NonZeroPoints[:,1]
#在新的画板上将这些点绘制出来,将这些坐标对应的像素点的值设为255
mask1=np.zeros(img.shape)
mask1[row,column]=255
#显示结果
cv.imshow("mask",mask)
cv.imshow("mask1",mask1)
cv.waitKey(0)
cv.destroyAllWindows()

程序运行结果:

opencv 图像轮廓的实现示例

通过上面两幅图的对比结果,我们可以看到:对象的组成像素点被正确地提取出来了。

到此这篇关于opencv 图像轮廓的实现示例的文章就介绍到这了,更多相关opencv 图像轮廓内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python的ORM框架中SQLAlchemy库的查询操作的教程
Apr 25 Python
在Django的上下文中设置变量的方法
Jul 20 Python
Python实现信用卡系统(支持购物、转账、存取钱)
Jun 24 Python
利用Python为iOS10生成图标和截屏
Sep 24 Python
git使用.gitignore设置不生效或不起作用问题的解决方法
Jun 01 Python
python 脚本生成随机 字母 + 数字密码功能
May 26 Python
django的ORM操作 增加和查询
Jul 26 Python
Python Web静态服务器非堵塞模式实现方法示例
Nov 21 Python
PyTorch中 tensor.detach() 和 tensor.data 的区别详解
Jan 06 Python
python 怎样进行内存管理
Nov 10 Python
python之django路由和视图案例教程
Jul 26 Python
Python中Numpy和Matplotlib的基本使用指南
Nov 02 Python
opencv 图像滤波(均值,方框,高斯,中值)
Jul 08 #Python
用opencv给图片换背景色的示例代码
Jul 08 #Python
python文件及目录操作代码汇总
Jul 08 #Python
Python预测2020高考分数和录取情况
Jul 08 #Python
Python venv虚拟环境配置过程解析
Jul 08 #Python
Python如何实现自带HTTP文件传输服务
Jul 08 #Python
Python第三方包PrettyTable安装及用法解析
Jul 08 #Python
You might like
PHP 实现多服务器共享 SESSION 数据
2009/08/15 PHP
解析htaccess伪静态的规则
2013/06/18 PHP
php实例分享之通过递归实现删除目录下的所有文件详解
2014/05/15 PHP
浅谈PHP中JSON数据操作
2015/07/01 PHP
textarea中的手动换行处理的jquery代码
2011/02/26 Javascript
基于jQuery实现的Ajax 验证用户名是否存在的实现代码
2011/04/06 Javascript
JS将秒换成时分秒实现代码
2013/09/03 Javascript
jquery简单实现带渐显效果的选项卡菜单代码
2015/09/01 Javascript
通过设置CSS中的position属性来固定层的位置
2015/12/14 Javascript
js+html5实现canvas绘制网页时钟的方法
2016/05/21 Javascript
IE8利用自带的setCapture和releaseCapture解决iframe的拖拽事件方法
2016/10/25 Javascript
详解JavaScript跨域总结与解决办法
2016/10/31 Javascript
JQuery学习总结【一】
2016/12/01 Javascript
JS生成和下载二维码的代码
2016/12/07 Javascript
Vue.js项目部署到服务器的详细步骤
2017/07/17 Javascript
JavaScript基础进阶之数组方法总结(推荐)
2017/09/04 Javascript
bootstrap fileinput插件实现预览上传照片功能
2018/01/23 Javascript
详解React之key的使用和实践
2018/09/29 Javascript
ES6的Fetch异步请求的实现方法
2018/12/07 Javascript
VUE脚手架具体使用方法
2019/05/20 Javascript
js实现漂亮的星空背景
2019/11/01 Javascript
Python简单日志处理类分享
2015/02/14 Python
python自动翻译实现方法
2016/05/28 Python
python中星号变量的几种特殊用法
2016/09/07 Python
利用python实现简单的邮件发送客户端示例
2017/12/23 Python
对Python发送带header的http请求方法详解
2019/01/02 Python
python 定时任务去检测服务器端口是否通的实例
2019/01/26 Python
selenium 安装与chromedriver安装的方法步骤
2019/06/12 Python
python topk()函数求最大和最小值实例
2020/04/02 Python
python 瀑布线指标编写实例
2020/06/03 Python
CSS3对背景图片的裁剪及尺寸和位置的设定方法
2016/03/07 HTML / CSS
联想新加坡官方网站:Lenovo Singapore
2017/10/24 全球购物
销售员岗位职责
2014/06/09 职场文书
通报表扬范文
2015/01/17 职场文书
义诊活动总结
2015/02/04 职场文书
高效课堂教学反思
2016/02/24 职场文书