numpy创建单位矩阵和对角矩阵的实例


Posted in Python onNovember 29, 2019

在学习linear regression时经常处理的数据一般多是矩阵或者n维向量的数据形式,所以必须对矩阵有一定的认识基础。

numpy中创建单位矩阵借助identity()函数。更为准确的说,此函数创建的是一个n*n的单位数组,返回值的dtype=array数据形式。其中接受的参数有两个,第一个是n值大小,第二个为数据类型,一般为浮点型。单位数组的概念与单位矩阵相同,主对角线元素为1,其他元素均为零,等同于单位1。而要想得到单位矩阵,只要用mat()函数将数组转换为矩阵即可。

>>> import numpy as np
>>> help(np.identity)
     
Help on function identity in module numpy:

identity(n, dtype=None)
  Return the identity array.
  
  The identity array is a square array with ones on
  the main diagonal.
  
  Parameters
  ----------
  n : int
    Number of rows (and columns) in `n` x `n` output.
  dtype : data-type, optional
    Data-type of the output. Defaults to ``float``.
  
  Returns
  -------
  out : ndarray
    `n` x `n` array with its main diagonal set to one,
    and all other elements 0.
  
  Examples
  --------
  >>> np.identity(3)
  array([[ 1., 0., 0.],
      [ 0., 1., 0.],
      [ 0., 0., 1.]])
>>> np.identity(5)
     
array([[1., 0., 0., 0., 0.],
    [0., 1., 0., 0., 0.],
    [0., 0., 1., 0., 0.],
    [0., 0., 0., 1., 0.],
    [0., 0., 0., 0., 1.]])
>>> A = np.mat(np.identity(5))
     
>>> A
     
matrix([[1., 0., 0., 0., 0.],
    [0., 1., 0., 0., 0.],
    [0., 0., 1., 0., 0.],
    [0., 0., 0., 1., 0.],
    [0., 0., 0., 0., 1.]])

矩阵的运算中还经常使用对角阵,numpy中的对角阵用eye()函数来创建。eye()函数接受五个参数,返回一个单位数组。第一个和第二个参数N,M分别对应表示创建数组的行数和列数,当然当你只设定一个值时,就默认了N=M。第三个参数k是对角线指数,跟diagonal中的offset参数是一样的,默认值为0,就是主对角线的方向,上三角方向为正,下三角方向为负,可以取-n到+m的范围。第四个参数是dtype,用于指定元素的数据类型,第五个参数是order,用于排序,有‘C'和‘F'两个参数,默认值为‘C',为行排序,‘F'为列排序。返回值为一个单位数组。

>>> help(np.eye)
    
Help on function eye in module numpy:

eye(N, M=None, k=0, dtype=<class 'float'>, order='C')
  Return a 2-D array with ones on the diagonal and zeros elsewhere.
  
  Parameters
  ----------
  N : int
   Number of rows in the output.
  M : int, optional
   Number of columns in the output. If None, defaults to `N`.
  k : int, optional
   Index of the diagonal: 0 (the default) refers to the main diagonal,
   a positive value refers to an upper diagonal, and a negative value
   to a lower diagonal.
  dtype : data-type, optional
   Data-type of the returned array.
  order : {'C', 'F'}, optional
    Whether the output should be stored in row-major (C-style) or
    column-major (Fortran-style) order in memory.
  
    .. versionadded:: 1.14.0
  
  Returns
  -------
  I : ndarray of shape (N,M)
   An array where all elements are equal to zero, except for the `k`-th
   diagonal, whose values are equal to one.
  
  See Also
  --------
  identity : (almost) equivalent function
  diag : diagonal 2-D array from a 1-D array specified by the user.
  
  Examples
  --------
  >>> np.eye(2, dtype=int)
  array([[1, 0],
      [0, 1]])
  >>> np.eye(3, k=1)
  array([[ 0., 1., 0.],
      [ 0., 0., 1.],
      [ 0., 0., 0.]])

numpy中的diagonal()方法可以对n*n的数组和方阵取对角线上的元素,diagonal()接受三个参数。第一个offset参数是主对角线的方向,默认值为0是主对角线,上三角方向为正,下三角方向为负,可以取-n到+n的范围。第二个参数和第三个参数是在数组大于2维时指定一个2维数组时使用,默认值axis1=0,axis2=1。

>>> help(A.diagonal)
     
Help on built-in function diagonal:

diagonal(...) method of numpy.matrix instance
  a.diagonal(offset=0, axis1=0, axis2=1)
  
  Return specified diagonals. In NumPy 1.9 the returned array is a
  read-only view instead of a copy as in previous NumPy versions. In
  a future version the read-only restriction will be removed.
  
  Refer to :func:`numpy.diagonal` for full documentation.
  
  See Also
  --------
  numpy.diagonal : equivalent function
>>> help(np.diagonal)
     
Help on function diagonal in module numpy:

diagonal(a, offset=0, axis1=0, axis2=1)
  Return specified diagonals.
  
  If `a` is 2-D, returns the diagonal of `a` with the given offset,
  i.e., the collection of elements of the form ``a[i, i+offset]``. If
  `a` has more than two dimensions, then the axes specified by `axis1`
  and `axis2` are used to determine the 2-D sub-array whose diagonal is
  returned. The shape of the resulting array can be determined by
  removing `axis1` and `axis2` and appending an index to the right equal
  to the size of the resulting diagonals.
  
  In versions of NumPy prior to 1.7, this function always returned a new,
  independent array containing a copy of the values in the diagonal.
  
  In NumPy 1.7 and 1.8, it continues to return a copy of the diagonal,
  but depending on this fact is deprecated. Writing to the resulting
  array continues to work as it used to, but a FutureWarning is issued.
  
  Starting in NumPy 1.9 it returns a read-only view on the original array.
  Attempting to write to the resulting array will produce an error.
  
  In some future release, it will return a read/write view and writing to
  the returned array will alter your original array. The returned array
  will have the same type as the input array.
  
  If you don't write to the array returned by this function, then you can
  just ignore all of the above.
  
  If you depend on the current behavior, then we suggest copying the
  returned array explicitly, i.e., use ``np.diagonal(a).copy()`` instead
  of just ``np.diagonal(a)``. This will work with both past and future
  versions of NumPy.
  
  Parameters
  ----------
  a : array_like
    Array from which the diagonals are taken.
  offset : int, optional
    Offset of the diagonal from the main diagonal. Can be positive or
    negative. Defaults to main diagonal (0).
  axis1 : int, optional
    Axis to be used as the first axis of the 2-D sub-arrays from which
    the diagonals should be taken. Defaults to first axis (0).
  axis2 : int, optional
    Axis to be used as the second axis of the 2-D sub-arrays from
    which the diagonals should be taken. Defaults to second axis (1).
  
  Returns
  -------
  array_of_diagonals : ndarray
    If `a` is 2-D, then a 1-D array containing the diagonal and of the
    same type as `a` is returned unless `a` is a `matrix`, in which case
    a 1-D array rather than a (2-D) `matrix` is returned in order to
    maintain backward compatibility.
    
    If ``a.ndim > 2``, then the dimensions specified by `axis1` and `axis2`
    are removed, and a new axis inserted at the end corresponding to the
    diagonal.
  
  Raises
  ------
  ValueError
    If the dimension of `a` is less than 2.
  
  See Also
  --------
  diag : MATLAB work-a-like for 1-D and 2-D arrays.
  diagflat : Create diagonal arrays.
  trace : Sum along diagonals.
  
  Examples
  --------
  >>> a = np.arange(4).reshape(2,2)
  >>> a
  array([[0, 1],
      [2, 3]])
  >>> a.diagonal()
  array([0, 3])
  >>> a.diagonal(1)
  array([1])
  
  A 3-D example:
  
  >>> a = np.arange(8).reshape(2,2,2); a
  array([[[0, 1],
      [2, 3]],
      [[4, 5],
      [6, 7]]])
  >>> a.diagonal(0, # Main diagonals of two arrays created by skipping
  ...      0, # across the outer(left)-most axis last and
  ...      1) # the "middle" (row) axis first.
  array([[0, 6],
      [1, 7]])
  
  The sub-arrays whose main diagonals we just obtained; note that each
  corresponds to fixing the right-most (column) axis, and that the
  diagonals are "packed" in rows.
  
  >>> a[:,:,0] # main diagonal is [0 6]
  array([[0, 2],
      [4, 6]])
  >>> a[:,:,1] # main diagonal is [1 7]
  array([[1, 3],
      [5, 7]])
>>> A = np.random.randint(low=5, high=30, size=(5, 5))
     
>>> A
     
array([[25, 15, 26, 6, 22],
    [27, 14, 22, 16, 21],
    [22, 17, 10, 14, 25],
    [11, 9, 27, 20, 6],
    [24, 19, 19, 26, 14]])
>>> A.diagonal()
     
array([25, 14, 10, 20, 14])
>>> A.diagonal(offset=1)
     
array([15, 22, 14, 6])
>>> A.diagonal(offset=-2)
     
array([22, 9, 19])

以上这篇numpy创建单位矩阵和对角矩阵的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
简单的Python2.7编程初学经验总结
Apr 01 Python
Python编程中的异常处理教程
Aug 21 Python
python字符串,数值计算
Oct 05 Python
python 实现tar文件压缩解压的实例详解
Aug 20 Python
python+opencv识别图片中的圆形
Mar 25 Python
python list删除元素时要注意的坑点分享
Apr 18 Python
python用fsolve、leastsq对非线性方程组求解
Dec 15 Python
Django 日志配置按日期滚动的方法
Jan 31 Python
Python使用ffmpy将amr格式的音频转化为mp3格式的例子
Aug 08 Python
Python获取一个用户名的组ID过程解析
Sep 03 Python
python加载自定义词典实例
Dec 06 Python
Python 解码Base64 得到码流格式文本实例
Jan 09 Python
python中从for循环延申到推导式的具体使用
Nov 29 #Python
python 实现矩阵按对角线打印
Nov 29 #Python
python之列表推导式的用法
Nov 29 #Python
python 实现方阵的对角线遍历示例
Nov 29 #Python
python 实现一个反向单位矩阵示例
Nov 29 #Python
python 实现矩阵填充0的例子
Nov 29 #Python
python循环嵌套的多种使用方法解析
Nov 29 #Python
You might like
利用php+mysql来做一个功能强大的在线计算器
2010/10/12 PHP
PHP Session_Regenerate_ID函数双释放内存破坏漏洞
2011/01/27 PHP
Codeigniter通过SimpleXML将xml转换成对象的方法
2015/03/19 PHP
PHP实现网站应用微信登录功能详解
2019/04/11 PHP
来自国外的页面JavaScript文件优化
2010/12/08 Javascript
Javascript仿PHP $_GET获取URL中的参数
2014/05/12 Javascript
JavaScript实现Java中StringBuffer的方法
2015/02/09 Javascript
分享javascript计算时间差的示例代码
2020/03/19 Javascript
jquery实现一个简单的表单验证实例
2016/03/30 Javascript
基于JS如何实现类似QQ好友头像hover时显示资料卡的效果(推荐)
2016/06/09 Javascript
浅谈js中对象的使用
2016/08/11 Javascript
JS简单实现仿百度控制台输出信息效果
2016/09/04 Javascript
AngularJS入门教程之表单校验用法示例
2016/11/02 Javascript
简单快速的实现js计算器功能
2017/08/17 Javascript
javaScript实现复选框全选反选事件详解
2020/11/20 Javascript
微信小程序的生命周期的详解
2017/10/19 Javascript
node使用mysql获取数据库数据中文乱码问题的解决
2019/12/02 Javascript
详解小程序BackgroundAudioManager踩坑之旅
2019/12/08 Javascript
javascript利用canvas实现鼠标拖拽功能
2020/07/23 Javascript
Python标准库内置函数complex介绍
2014/11/25 Python
Python实现的数据结构与算法之基本搜索详解
2015/04/22 Python
Python使用自带的ConfigParser模块读写ini配置文件
2016/06/26 Python
Python学习小技巧总结
2018/06/10 Python
Python编程flask使用页面模版的方法
2018/12/28 Python
python反编译学习之字节码详解
2019/05/19 Python
Python常用编译器原理及特点解析
2020/03/23 Python
HTML5的结构和语义(3):语义性的块级元素
2008/10/17 HTML / CSS
Html+Css+Jquery实现左侧滑动拉伸导航菜单栏的示例代码
2020/03/17 HTML / CSS
大学生自我评价怎样写好
2013/10/23 职场文书
医学类个人求职信范文
2014/02/05 职场文书
结婚周年感言
2014/02/24 职场文书
金融专业求职信
2014/08/05 职场文书
活动总结新闻稿
2014/08/30 职场文书
党员学习正风肃纪思想汇报
2014/09/12 职场文书
党员自我剖析材料范文
2014/10/06 职场文书
2016新年致辞
2015/08/01 职场文书