numpy创建单位矩阵和对角矩阵的实例


Posted in Python onNovember 29, 2019

在学习linear regression时经常处理的数据一般多是矩阵或者n维向量的数据形式,所以必须对矩阵有一定的认识基础。

numpy中创建单位矩阵借助identity()函数。更为准确的说,此函数创建的是一个n*n的单位数组,返回值的dtype=array数据形式。其中接受的参数有两个,第一个是n值大小,第二个为数据类型,一般为浮点型。单位数组的概念与单位矩阵相同,主对角线元素为1,其他元素均为零,等同于单位1。而要想得到单位矩阵,只要用mat()函数将数组转换为矩阵即可。

>>> import numpy as np
>>> help(np.identity)
     
Help on function identity in module numpy:

identity(n, dtype=None)
  Return the identity array.
  
  The identity array is a square array with ones on
  the main diagonal.
  
  Parameters
  ----------
  n : int
    Number of rows (and columns) in `n` x `n` output.
  dtype : data-type, optional
    Data-type of the output. Defaults to ``float``.
  
  Returns
  -------
  out : ndarray
    `n` x `n` array with its main diagonal set to one,
    and all other elements 0.
  
  Examples
  --------
  >>> np.identity(3)
  array([[ 1., 0., 0.],
      [ 0., 1., 0.],
      [ 0., 0., 1.]])
>>> np.identity(5)
     
array([[1., 0., 0., 0., 0.],
    [0., 1., 0., 0., 0.],
    [0., 0., 1., 0., 0.],
    [0., 0., 0., 1., 0.],
    [0., 0., 0., 0., 1.]])
>>> A = np.mat(np.identity(5))
     
>>> A
     
matrix([[1., 0., 0., 0., 0.],
    [0., 1., 0., 0., 0.],
    [0., 0., 1., 0., 0.],
    [0., 0., 0., 1., 0.],
    [0., 0., 0., 0., 1.]])

矩阵的运算中还经常使用对角阵,numpy中的对角阵用eye()函数来创建。eye()函数接受五个参数,返回一个单位数组。第一个和第二个参数N,M分别对应表示创建数组的行数和列数,当然当你只设定一个值时,就默认了N=M。第三个参数k是对角线指数,跟diagonal中的offset参数是一样的,默认值为0,就是主对角线的方向,上三角方向为正,下三角方向为负,可以取-n到+m的范围。第四个参数是dtype,用于指定元素的数据类型,第五个参数是order,用于排序,有‘C'和‘F'两个参数,默认值为‘C',为行排序,‘F'为列排序。返回值为一个单位数组。

>>> help(np.eye)
    
Help on function eye in module numpy:

eye(N, M=None, k=0, dtype=<class 'float'>, order='C')
  Return a 2-D array with ones on the diagonal and zeros elsewhere.
  
  Parameters
  ----------
  N : int
   Number of rows in the output.
  M : int, optional
   Number of columns in the output. If None, defaults to `N`.
  k : int, optional
   Index of the diagonal: 0 (the default) refers to the main diagonal,
   a positive value refers to an upper diagonal, and a negative value
   to a lower diagonal.
  dtype : data-type, optional
   Data-type of the returned array.
  order : {'C', 'F'}, optional
    Whether the output should be stored in row-major (C-style) or
    column-major (Fortran-style) order in memory.
  
    .. versionadded:: 1.14.0
  
  Returns
  -------
  I : ndarray of shape (N,M)
   An array where all elements are equal to zero, except for the `k`-th
   diagonal, whose values are equal to one.
  
  See Also
  --------
  identity : (almost) equivalent function
  diag : diagonal 2-D array from a 1-D array specified by the user.
  
  Examples
  --------
  >>> np.eye(2, dtype=int)
  array([[1, 0],
      [0, 1]])
  >>> np.eye(3, k=1)
  array([[ 0., 1., 0.],
      [ 0., 0., 1.],
      [ 0., 0., 0.]])

numpy中的diagonal()方法可以对n*n的数组和方阵取对角线上的元素,diagonal()接受三个参数。第一个offset参数是主对角线的方向,默认值为0是主对角线,上三角方向为正,下三角方向为负,可以取-n到+n的范围。第二个参数和第三个参数是在数组大于2维时指定一个2维数组时使用,默认值axis1=0,axis2=1。

>>> help(A.diagonal)
     
Help on built-in function diagonal:

diagonal(...) method of numpy.matrix instance
  a.diagonal(offset=0, axis1=0, axis2=1)
  
  Return specified diagonals. In NumPy 1.9 the returned array is a
  read-only view instead of a copy as in previous NumPy versions. In
  a future version the read-only restriction will be removed.
  
  Refer to :func:`numpy.diagonal` for full documentation.
  
  See Also
  --------
  numpy.diagonal : equivalent function
>>> help(np.diagonal)
     
Help on function diagonal in module numpy:

diagonal(a, offset=0, axis1=0, axis2=1)
  Return specified diagonals.
  
  If `a` is 2-D, returns the diagonal of `a` with the given offset,
  i.e., the collection of elements of the form ``a[i, i+offset]``. If
  `a` has more than two dimensions, then the axes specified by `axis1`
  and `axis2` are used to determine the 2-D sub-array whose diagonal is
  returned. The shape of the resulting array can be determined by
  removing `axis1` and `axis2` and appending an index to the right equal
  to the size of the resulting diagonals.
  
  In versions of NumPy prior to 1.7, this function always returned a new,
  independent array containing a copy of the values in the diagonal.
  
  In NumPy 1.7 and 1.8, it continues to return a copy of the diagonal,
  but depending on this fact is deprecated. Writing to the resulting
  array continues to work as it used to, but a FutureWarning is issued.
  
  Starting in NumPy 1.9 it returns a read-only view on the original array.
  Attempting to write to the resulting array will produce an error.
  
  In some future release, it will return a read/write view and writing to
  the returned array will alter your original array. The returned array
  will have the same type as the input array.
  
  If you don't write to the array returned by this function, then you can
  just ignore all of the above.
  
  If you depend on the current behavior, then we suggest copying the
  returned array explicitly, i.e., use ``np.diagonal(a).copy()`` instead
  of just ``np.diagonal(a)``. This will work with both past and future
  versions of NumPy.
  
  Parameters
  ----------
  a : array_like
    Array from which the diagonals are taken.
  offset : int, optional
    Offset of the diagonal from the main diagonal. Can be positive or
    negative. Defaults to main diagonal (0).
  axis1 : int, optional
    Axis to be used as the first axis of the 2-D sub-arrays from which
    the diagonals should be taken. Defaults to first axis (0).
  axis2 : int, optional
    Axis to be used as the second axis of the 2-D sub-arrays from
    which the diagonals should be taken. Defaults to second axis (1).
  
  Returns
  -------
  array_of_diagonals : ndarray
    If `a` is 2-D, then a 1-D array containing the diagonal and of the
    same type as `a` is returned unless `a` is a `matrix`, in which case
    a 1-D array rather than a (2-D) `matrix` is returned in order to
    maintain backward compatibility.
    
    If ``a.ndim > 2``, then the dimensions specified by `axis1` and `axis2`
    are removed, and a new axis inserted at the end corresponding to the
    diagonal.
  
  Raises
  ------
  ValueError
    If the dimension of `a` is less than 2.
  
  See Also
  --------
  diag : MATLAB work-a-like for 1-D and 2-D arrays.
  diagflat : Create diagonal arrays.
  trace : Sum along diagonals.
  
  Examples
  --------
  >>> a = np.arange(4).reshape(2,2)
  >>> a
  array([[0, 1],
      [2, 3]])
  >>> a.diagonal()
  array([0, 3])
  >>> a.diagonal(1)
  array([1])
  
  A 3-D example:
  
  >>> a = np.arange(8).reshape(2,2,2); a
  array([[[0, 1],
      [2, 3]],
      [[4, 5],
      [6, 7]]])
  >>> a.diagonal(0, # Main diagonals of two arrays created by skipping
  ...      0, # across the outer(left)-most axis last and
  ...      1) # the "middle" (row) axis first.
  array([[0, 6],
      [1, 7]])
  
  The sub-arrays whose main diagonals we just obtained; note that each
  corresponds to fixing the right-most (column) axis, and that the
  diagonals are "packed" in rows.
  
  >>> a[:,:,0] # main diagonal is [0 6]
  array([[0, 2],
      [4, 6]])
  >>> a[:,:,1] # main diagonal is [1 7]
  array([[1, 3],
      [5, 7]])
>>> A = np.random.randint(low=5, high=30, size=(5, 5))
     
>>> A
     
array([[25, 15, 26, 6, 22],
    [27, 14, 22, 16, 21],
    [22, 17, 10, 14, 25],
    [11, 9, 27, 20, 6],
    [24, 19, 19, 26, 14]])
>>> A.diagonal()
     
array([25, 14, 10, 20, 14])
>>> A.diagonal(offset=1)
     
array([15, 22, 14, 6])
>>> A.diagonal(offset=-2)
     
array([22, 9, 19])

以上这篇numpy创建单位矩阵和对角矩阵的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python内存管理分析
Apr 08 Python
python 线程的暂停, 恢复, 退出详解及实例
Dec 06 Python
Python面向对象之类的内置attr属性示例
Dec 14 Python
解决python Markdown模块乱码的问题
Feb 14 Python
总结Python图形用户界面和游戏开发知识点
May 22 Python
python 画二维、三维点之间的线段实现方法
Jul 07 Python
nginx+uwsgi+django环境搭建的方法步骤
Nov 25 Python
Python创建临时文件和文件夹
Aug 05 Python
python如何随机生成高强度密码
Aug 19 Python
使用Python解析Chrome浏览器书签的示例
Nov 13 Python
详解Selenium 元素定位和WebDriver常用方法
Dec 04 Python
Python基于爬虫实现全网搜索并下载音乐
Feb 14 Python
python中从for循环延申到推导式的具体使用
Nov 29 #Python
python 实现矩阵按对角线打印
Nov 29 #Python
python之列表推导式的用法
Nov 29 #Python
python 实现方阵的对角线遍历示例
Nov 29 #Python
python 实现一个反向单位矩阵示例
Nov 29 #Python
python 实现矩阵填充0的例子
Nov 29 #Python
python循环嵌套的多种使用方法解析
Nov 29 #Python
You might like
php下实现折线图效果的代码
2007/04/28 PHP
DISCUZ 论坛管理员密码忘记的解决方法
2009/05/14 PHP
php不允许用户提交空表单(php空值判断)
2013/11/12 PHP
Yii查询生成器(Query Builder)用法实例教程
2014/09/04 PHP
php使用sql server验证连接数据库的方法
2014/12/25 PHP
php从字符串创建函数的方法
2015/03/16 PHP
joomla实现注册用户添加新字段的方法
2016/05/05 PHP
Laravel4中的Validator验证扩展用法详解
2016/07/26 PHP
php 输出json及显示json中的中文汉字详解及实例
2016/11/09 PHP
PHP不使用内置函数实现字符串转整型的方法示例
2017/07/03 PHP
PHP http请求超时问题解决方案
2020/11/13 PHP
一个加载js文件的小脚本
2007/06/28 Javascript
基于jQuery的投票系统显示结果插件
2011/08/12 Javascript
JavaScript数组常用操作技巧汇总
2014/11/17 Javascript
javascript+ajax实现产品页面加载信息
2015/07/09 Javascript
jquery实现动画菜单的左右滚动、渐变及图形背景滚动等效果
2015/08/25 Javascript
JS实现静态页面搜索并高亮显示功能完整示例
2017/09/19 Javascript
详解多页应用 Webpack4 配置优化与踩坑记录
2018/10/16 Javascript
详解vue-cli中使用rem,vue自适应
2019/05/06 Javascript
JavaScript 继承 封装 多态实现及原理详解
2019/07/29 Javascript
JavaScript定时器常见用法实例分析
2019/11/15 Javascript
vue动态设置路由权限的主要思路
2021/01/13 Vue.js
Python标准库defaultdict模块使用示例
2015/04/28 Python
python实现教务管理系统
2018/03/12 Python
python+POP3实现批量下载邮件附件
2018/06/19 Python
详解python使用turtle库来画一朵花
2019/03/21 Python
python如何通过pyqt5实现进度条
2020/01/20 Python
日本著名的平价时尚女性购物网站:Fifth
2016/08/24 全球购物
德国机车企业:FC-Moto
2017/10/27 全球购物
自荐信怎么写好
2013/11/11 职场文书
安全生产演讲稿
2014/05/09 职场文书
2014财务人员自我评价范文
2014/09/21 职场文书
合伙开公司协议书范本
2014/10/28 职场文书
病人慰问信范文
2015/02/15 职场文书
单位病假条范文
2015/08/17 职场文书
2016元旦文艺汇演主持词(开场白+结束语)
2015/12/03 职场文书