python中scikit-learn机器代码实例


Posted in Python onAugust 05, 2018

我们给大家带来了关于学习python中scikit-learn机器代码的相关具体实例,以下就是全部代码内容:

# -*- coding: utf-8 -*-
 
import numpy
from sklearn import metrics
from sklearn.svm import LinearSVC
from sklearn.naive_bayes import MultinomialNB
from sklearn import linear_model
from sklearn.datasets import load_iris
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import OneHotEncoder, StandardScaler
from sklearn import cross_validation
from sklearn import preprocessing
#import iris_data
 
def load_data():
  iris = load_iris()
  x, y = iris.data, iris.target
  x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.20, random_state=42)
  return x_train,y_train,x_test,y_test
 
def train_clf3(train_data, train_tags):
  clf = LinearSVC(C=1100.0)#default with 'rbf' 
  clf.fit(train_data,train_tags)
  return clf
 
def train_clf(train_data, train_tags):
  clf = MultinomialNB(alpha=0.01)
  print numpy.asarray(train_tags)
  clf.fit(train_data, numpy.asarray(train_tags))
  return clf
 
def evaluate(actual, pred):
  m_precision = metrics.precision_score(actual, pred)
  m_recall = metrics.recall_score(actual, pred)
  print 'precision:{0:.3f}'.format(m_precision)
  print 'recall:{0:0.3f}'.format(m_recall)
  print 'f1-score:{0:.8f}'.format(metrics.f1_score(actual,pred));
 
x_train,y_train,x_test,y_test = load_data()
 
clf = train_clf(x_train, y_train)
 
pred = clf.predict(x_test)
evaluate(numpy.asarray(y_test), pred)
print metrics.classification_report(y_test, pred)
 
 
使用自定义数据
# coding: utf-8
 
import numpy
from sklearn import metrics
from sklearn.feature_extraction.text import HashingVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.feature_extraction.text import CountVectorizer,TfidfTransformer
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.svm import LinearSVC
import codecs
from sklearn.ensemble import RandomForestClassifier
from sklearn import cross_validation
from sklearn import linear_model
 
train_corpus = [
   '我们 我们 好孩子 认证 。 就是',
   '我们 好孩子 认证 。 中国',
   '我们 好孩子 认证 。 孤独',
   '我们 好孩子 认证 。',
 ]
 
test_corpus = [
   '我 菲律宾 韩国',
   '我们 好孩子 认证 。 中国',
 ]
 
def input_data(train_file, test_file):
  train_words = []
  train_tags = []
  test_words = []
  test_tags = []
  f1 = codecs.open(train_file,'r','utf-8','ignore')
  for line in f1:
    tks = line.split(':', 1)
    word_list = tks[1]
    word_array = word_list[1:(len(word_list)-3)].split(", ")
    train_words.append(" ".join(word_array))
    train_tags.append(tks[0])
  f2 = codecs.open(test_file,'r','utf-8','ignore')
  for line in f2:
    tks = line.split(':', 1)
    word_list = tks[1]
    word_array = word_list[1:(len(word_list)-3)].split(", ")
    test_words.append(" ".join(word_array))
    test_tags.append(tks[0])
  return train_words, train_tags, test_words, test_tags
 
 
def vectorize(train_words, test_words):
  #v = HashingVectorizer(n_features=25000, non_negative=True)
  v = HashingVectorizer(non_negative=True)
  #v = CountVectorizer(min_df=1)
  train_data = v.fit_transform(train_words)
  test_data = v.fit_transform(test_words)
  return train_data, test_data
 
def vectorize1(train_words, test_words):
  tv = TfidfVectorizer(sublinear_tf = False,use_idf=True);
  train_data = tv.fit_transform(train_words);
  tv2 = TfidfVectorizer(vocabulary = tv.vocabulary_);
  test_data = tv2.fit_transform(test_words);
  return train_data, test_data
  
def vectorize2(train_words, test_words):
  count_v1= CountVectorizer(stop_words = 'english', max_df = 0.5); 
  counts_train = count_v1.fit_transform(train_words); 
   
  count_v2 = CountVectorizer(vocabulary=count_v1.vocabulary_);
  counts_test = count_v2.fit_transform(test_words);
   
  tfidftransformer = TfidfTransformer();
   
  train_data = tfidftransformer.fit(counts_train).transform(counts_train); 
  test_data = tfidftransformer.fit(counts_test).transform(counts_test);
  return train_data, test_data
 
def evaluate(actual, pred):
  m_precision = metrics.precision_score(actual, pred)
  m_recall = metrics.recall_score(actual, pred)
  print 'precision:{0:.3f}'.format(m_precision)
  print 'recall:{0:0.3f}'.format(m_recall)
  print 'f1-score:{0:.8f}'.format(metrics.f1_score(actual,pred));
 
 
def train_clf(train_data, train_tags):
  clf = MultinomialNB(alpha=0.01)
  clf.fit(train_data, numpy.asarray(train_tags))
  return clf
 
 
def train_clf1(train_data, train_tags):
  #KNN Classifier
  clf = KNeighborsClassifier()#default with k=5 
  clf.fit(train_data, numpy.asarray(train_tags)) 
  return clf
 
def train_clf2(train_data, train_tags):
  clf = linear_model.LogisticRegression(C=1e5) 
  clf.fit(train_data,train_tags)
  return clf
 
def train_clf3(train_data, train_tags):
  clf = LinearSVC(C=1100.0)#default with 'rbf' 
  clf.fit(train_data,train_tags)
  return clf
 
def train_clf4(train_data, train_tags):
  """
  随机森林,不可使用稀疏矩阵
  """
  clf = RandomForestClassifier(n_estimators=10)
  clf.fit(train_data.todense(),train_tags)
  return clf
 
#使用codecs逐行读取
def codecs_read_label_line(filename):
  label_list=[]
  f = codecs.open(filename,'r','utf-8','ignore')
  line = f.readline()
  while line:
    #label_list.append(line[0:len(line)-2])
    label_list.append(line[0:len(line)-1])
    line = f.readline()
  f.close()
  return label_list
 
def save_test_features(test_url, test_label):
  test_feature_list = codecs_read_label_line('test.dat')
  fw = open('test_labeded.dat',"w+")
  
  for (url,label) in zip(test_feature_list,test_label):
    fw.write(url+'\t'+label)
    fw.write('\n')
  fw.close()
 
def main():
  train_file = u'..\\file\\py_train.txt'
  test_file = u'..\\file\\py_test.txt'
  train_words, train_tags, test_words, test_tags = input_data(train_file, test_file)
  #print len(train_words), len(train_tags), len(test_words), len(test_words), 
  
  train_data, test_data = vectorize1(train_words, test_words)
  print type(train_data)
  print train_data.shape
  print test_data.shape
  print test_data[0].shape
  print numpy.asarray(test_data[0])
  
  clf = train_clf3(train_data, train_tags)
  
  scores = cross_validation.cross_val_score(
  clf, train_data, train_tags, cv=5, scoring="f1_weighted")
  print scores
 
  #predicted = cross_validation.cross_val_predict(clf, train_data,train_tags, cv=5)  
  '''
  
  '''
  pred = clf.predict(test_data)
  error_list=[]
  for (true_tag,predict_tag) in zip(test_tags,pred):
    if true_tag != predict_tag:
      print true_tag,predict_tag
      error_list.append(true_tag+' '+predict_tag)
  print len(error_list)
  evaluate(numpy.asarray(test_tags), pred)
  '''
  #输出打标签结果
  test_feature_list = codecs_read_label_line('test.dat')
  save_test_features(test_feature_list, pred)
  '''
  
 
if __name__ == '__main__':
  main()
Python 相关文章推荐
使用Python的turtle模块画图的方法
Nov 15 Python
TensorFlow实现创建分类器
Feb 06 Python
python如何将图片转换为字符图片
Aug 19 Python
python虚拟环境完美部署教程
Aug 06 Python
python 并发编程 多路复用IO模型详解
Aug 20 Python
Python控制台输出时刷新当前行内容而不是输出新行的实现
Feb 21 Python
django-xadmin根据当前登录用户动态设置表单字段默认值方式
Mar 13 Python
Python3交互式shell ipython3安装及使用详解
Jul 11 Python
python中通过pip安装库文件时出现“EnvironmentError: [WinError 5] 拒绝访问”的问题及解决方案
Aug 11 Python
Python基础之赋值,浅拷贝,深拷贝的区别
Apr 30 Python
pycharm 如何查看某一函数源码的快捷键
May 12 Python
Python实现生成bmp图像的方法
Jun 13 Python
解决使用pycharm提交代码时冲突之后文件丢失找回的方法
Aug 05 #Python
Python字符串、整数、和浮点型数相互转换实例
Aug 04 #Python
python与caffe改变通道顺序的方法
Aug 04 #Python
Python爬虫PyQuery库基本用法入门教程
Aug 04 #Python
python list转矩阵的实例讲解
Aug 04 #Python
Python 生成 -1~1 之间的随机数矩阵方法
Aug 04 #Python
Python爬虫框架scrapy实现downloader_middleware设置proxy代理功能示例
Aug 04 #Python
You might like
jq的get传参数在utf-8中乱码问题的解决php版
2008/07/23 PHP
PHP session 会话处理函数
2016/06/06 PHP
PHP带节点操作的无限分类实现方法详解
2016/11/09 PHP
PHP中检索字符串的方法分析【strstr与substr_count方法】
2017/02/17 PHP
解决laravel 出现ajax请求419(unknown status)的问题
2019/09/03 PHP
Javascript 判断 object 的特定类转载
2007/02/01 Javascript
nodejs 后缀名判断限制代码
2011/03/31 NodeJs
JavaScript的parseInt 取整使用
2011/05/09 Javascript
S2SH整合JQuery+Ajax实现登录验证功能实现代码
2013/01/30 Javascript
JavaScript中prototype为对象添加属性的误区介绍
2013/10/15 Javascript
javascript动画算法实例分析
2015/07/31 Javascript
js+css实现的圆角边框TAB选项卡滑动门代码分享(2款)
2015/08/26 Javascript
js HTML5 Ajax实现文件上传进度条功能
2016/02/13 Javascript
深入浅析Bootstrap列表组组件
2016/05/03 Javascript
浅谈javascript alert和confirm的美化
2016/12/15 Javascript
vue2.0的contextmenu右键弹出菜单的实例代码
2017/07/24 Javascript
使用travis-ci如何持续部署node.js应用详解
2017/07/30 Javascript
微信小程序实现星级评分和展示
2018/07/05 Javascript
vue中使用sessionStorage记住密码功能
2018/07/24 Javascript
jQuery Ajax async=>false异步改为同步时,解决导致浏览器假死的问题
2019/07/22 jQuery
google广告之另类js调用实现代码
2020/08/22 Javascript
vue实现顶部菜单栏
2020/11/08 Javascript
Python编程实现控制cmd命令行显示颜色的方法示例
2017/08/14 Python
Python调用百度根据经纬度查询地址的示例代码
2019/07/07 Python
详解python常用命令行选项与环境变量
2020/02/20 Python
浅析Django 接收所有文件,前端展示文件(包括视频,文件,图片)ajax请求
2020/03/09 Python
哈工大自然语言处理工具箱之ltp在windows10下的安装使用教程
2020/05/07 Python
浅析NumPy 切片和索引
2020/09/02 Python
python用Configobj模块读取配置文件
2020/09/26 Python
Pycharm 跳转回之前所在页面的操作
2021/02/05 Python
使用CSS禁止textarea调整大小功能的方法
2015/03/13 HTML / CSS
加拿大时尚少女服装品牌:Garage
2016/10/10 全球购物
儿科护士自我鉴定
2013/10/14 职场文书
美术教师个人工作总结
2015/02/06 职场文书
如何开发一个渐进式Web应用程序PWA
2021/05/10 Javascript
使用CSS实现百叶窗效果示例代码
2023/05/07 HTML / CSS