python 平衡二叉树实现代码示例


Posted in Python onJuly 07, 2018

平衡二叉树:

在上一节二叉树的基础上我们实现,如何将生成平衡的二叉树

所谓平衡二叉树:

我自己定义就是:任何一个节点的左高度和右高度的差的绝对值都小于2

如图所示,此时a的左高度等于3,有高度等于1,差值为2,属于不平衡中的左偏

python 平衡二叉树实现代码示例

此时的处理办法就是:

将不平衡的元素的左枝的最右节点变为当前节点,

此时分两种情况:

一、左枝有最右节点

将最右节点的左枝赋予其父节点的右枝

二、左枝没有最右节点,

直接将左枝节点做父级节点,父级节点做其右枝

python 平衡二叉树实现代码示例

如图所示,图更清楚些。

可能会有疑问,为什么这样变换?

假定a左偏,就需要一个比a小的最少一个值d(因为d唯一 一个是比a小,而且比a的左枝所有数都大的值)做父集结点,a做d的右枝,这样在最上面的d节点就平衡了。

我们可以反证一下:

如果不是d是另一个数假设为h,此时h做父节点,a做父节点的右节点

因为a在h右边,所以 a > h

因为b,e,d,f都是h的左枝,所以 h>d>b>e>f

所以 a>h>d>b>e>f

所以在不加入新节点的情况下,就只能是d

左偏和右偏是一样的,可以完全镜像过来就ok了

处理了所有节点 的左偏和右偏使整个二叉树平衡,这就是平衡二叉树的基本思想

代码实现:

# -*- coding:utf-8 -*-
# 日期:2018/6/12 8:37
# Author:小鼠标

# 节点对象
class Node:
  def __init__(self):
    self.left_children = None
    self.left_height = 0
    self.right_children = None
    self.right_height = 0
    self.value = None

# 二叉树对象
class tree:
  def __init__(self):
    self.root = False
    self.front_list = []
    self.middle_list = []
    self.after_list = []
  # 生成二叉树
  def create_tree(self,n=0,l=[]):
    if l == []:
      print("传入的列表为空")
      return
    if n > len(l)-1:
      print("二叉树生成")
      return
    node = Node()
    node.value = l[n]
    if not self.root:
      self.root = node
      self.list = l
    else:
      self.add(self.root,node)
    self.create_tree(n+1,l)
  # 添加节点
  def add(self,parent,new_node):
    if new_node.value > parent.value:
      # 插入值比父亲值大,所以在父节点右边
      if parent.right_children == None:
        parent.right_children = new_node
        # 新插入节点的父亲节点的高度值为1,也就是子高度值0+1
        parent.right_height = 1
        # 插入值后 从下到上更新节点的height
      else:
        self.add(parent.right_children,new_node)
        # 父亲节点的右高度等于右孩子,左右高度中较大的值 + 1
        parent.right_height = max(parent.right_children.right_height, parent.right_children.left_height) + 1
        # ======= 此处开始判断平衡二叉树=======
        # 右边高度大于左边高度 属于右偏
        if parent.right_height - parent.left_height >= 2:
          self.right_avertence(parent)
    else:
      # 插入值比父亲值小,所以在父节点左边
      if parent.left_children == None:
        parent.left_children = new_node
        parent.left_height = 1
      else:
        self.add(parent.left_children,new_node)
        parent.left_height = max(parent.left_children.right_height, parent.left_children.left_height) + 1
        # ======= 此处开始判断平衡二叉树=======
        # 左边高度大于右边高度 属于左偏
        if parent.left_height - parent.right_height >= 2:
          self.left_avertence(parent)
  # 更新当前节点下的所有节点的高度
  def update_height(self,node):
    # 初始化节点高度值为0
    node.left_height = 0
    node.right_height = 0
    # 是否到最底层的一个
    if node.left_children == None and node.right_children == None:
      return
    else:
      if node.left_children:
        self.update_height(node.left_children)
        # 当前节点的高度等于左右子节点高度的较大值 + 1
        node.left_height = max(node.left_children.left_height,node.left_children.right_height) + 1
      if node.right_children:
        self.update_height(node.right_children)
        # 当前节点的高度等于左右子节点高度的较大值 + 1
        node.right_height = max(node.right_children.left_height, node.right_children.right_height) + 1
      # 检查是否仍有不平衡
      if node.left_height - node.right_height >= 2:
        self.left_avertence(node)
      elif node.left_height - node.right_height <= -2:
        self.right_avertence(node)

  def right_avertence(self,node):
    # 右偏 就将当前节点的最左节点做父亲
    new_code = Node()
    new_code.value = node.value
    new_code.left_children = node.left_children
    best_left = self.best_left_right(node.right_children)
    v = node.value
    # 返回的对象本身,
    if best_left == node.right_children and best_left.left_children == None:
      # 说明当前节点没有有节点
      node.value = best_left.value
      node.right_children = best_left.right_children
    else:
      node.value = best_left.left_children.value
      best_left.left_children = best_left.left_children.right_children
    node.left_children = new_code
    self.update_height(node)

  # 处理左偏情况
  def left_avertence(self,node):
    new_code = Node()
    new_code.value = node.value
    new_code.right_children = node.right_children
    best_right = self.best_left_right(node.left_children,1)
    v = node.value
    # 返回的对象本身,
    if best_right == node.left_children and best_right.right_children == None:
      # 说明当前节点没有有节点
      node.value = best_right.value
      node.left_children = best_right.left_children
    else:
      node.value = best_right.right_children.value
      best_right.right_children = best_right.right_children.left_children
    node.right_children = new_code
    self.update_height(node)
  # 返回node节点最左(右)子孙的父级
  def best_left_right(self,node,type=0):
    # type=0 默认找最左子孙
    if type == 0:
      if node.left_children == None:
        return node
      elif node.left_children.left_children == None:
        return node
      else:
        return self.best_left_right(node.left_children,type)
    else:
      if node.right_children == None:
        return node
      elif node.right_children.right_children == None:
        return node
      else:
        return self.best_left_right(node.right_children,type)
  # 前序(先中再左最后右)
  def front(self,node=None):
    if node == None:
      self.front_list = []
      node = self.root
    # 输出当前节点
    self.front_list.append(node.value)
    # 先判断左枝
    if not node.left_children == None:
      self.front(node.left_children)
    # 再判断右枝
    if not node.right_children == None:
      self.front(node.right_children)
    # 返回最终结果
    return self.front_list
  # 中序(先左再中最后右)
  def middle(self,node=None):
    if node == None:
      node = self.root
    # 先判断左枝
    if not node.left_children == None:
      self.middle(node.left_children)
    # 输出当前节点
    self.middle_list.append(node.value)
    # 再判断右枝
    if not node.right_children == None:
      self.middle(node.right_children)
    return self.middle_list
  # 后序(先左再右最后中)
  def after(self,node=None):
    if node == None:
      node = self.root
    # 先判断左枝
    if not node.left_children == None:
      self.after(node.left_children)
    # 再判断右枝
    if not node.right_children == None:
      self.after(node.right_children)
    self.after_list.append(node.value)
    return self.after_list
  # 节点删除
  def del_node(self,v,node=None):
    if node == None:
      node = self.root
      # 删除根节点
      if node.value == v:
        self.del_root(self.root)
        return
    # 删除当前节点的左节点
    if node.left_children:
      if node.left_children.value == v:
        self.del_left(node)
        return
    # 删除当前节点的右节点
    if node.right_children:
      if node.right_children.value == v:
        self.del_right(node)
        return
    if v > node.value:
      if node.right_children:
        self.del_node(v, node.right_children)
      else:
        print("删除的元素不存在")
    else:
      if node.left_children:
        self.del_node(v, node.left_children)
      else:
        print("删除的元素不存在")
  #删除当前节点的右节点
  def del_right(self,node):
    # 情况1 删除节点没有右枝
    if node.right_children.right_children == None:
      node.right_children = node.right_children.left_children
    else:
      best_left = self.best_left_right(node.right_children.right_children)
      # 表示右枝最左孙就是右枝本身
      if best_left == node.right_children.right_children and best_left.left_children == None:
        node.right_children.value = best_left.value
        node.right_children.right_children = best_left.right_children
      else:
        node.right_children.value = best_left.left_children.value
        best_left.left_children = best_left.left_children.right_children
  # 删除当前节点的左节点
  def del_left(self,node):
    # 情况1 删除节点没有右枝
    if node.left_children.right_children == None:
      node.left_children = node.left_children.left_children
    else:
      best_left = self.best_left_right(node.left_children.right_children)
      # 表示右枝最左子孙就是右枝本身
      if best_left == node.left_children.right_children and best_left.left_children == None:
        node.left_children.value = best_left.value
        node.left_children.right_children = best_left.right_children
      else:
        node.left_children.value = best_left.left_children.value
        best_left.left_children = best_left.left_children.right_children
  # 删除根节点
  def del_root(self,node):
    if node.right_children == None:
      if node.left_children == None:
        node.value = None
      else:
        self.root = node.left_children
    else:
      best_left = self.best_left_right(node.right_children)
      # 表示右枝最左子孙就是右枝本身
      if best_left == node.right_children and best_left.left_children == None:
        node.value = best_left.value
        node.right_children = best_left.right_children
      else:
        node.value = best_left.left_children.value
        best_left.left_children = best_left.left_children.right_children

  # 搜索
  def search(self,v,node=None):
    if node == None:
      node = self.root
    if node.value == v:
      return True
    if v > node.value:
      if not node.right_children == None:
        return self.search(v, node.right_children)
    else:
      if not node.left_children == None:
        return self.search(v, node.left_children)
    return False
if __name__ == '__main__':
  # 需要建立二叉树的列表
  list = [4, 6, 3, 1, 7, 9, 8, 5, 2]
  t = tree()
  t.create_tree(0,list)
  res = t.front()
  print('前序', res)

执行结果:

前序 [4, 2, 1, 3, 7, 6, 5, 9, 8]

通过前序可以画出二叉树

python 平衡二叉树实现代码示例

完美,哈哈。

这是我钻了两天才写出的代码,哈哈,努力还是有回报的,加油。

下一步就是代码优化了

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
数据挖掘之Apriori算法详解和Python实现代码分享
Nov 07 Python
python使用PIL缩放网络图片并保存的方法
Apr 24 Python
python 捕获shell脚本的输出结果实例
Jan 04 Python
python中使用%与.format格式化文本方法解析
Dec 27 Python
详解PyTorch批训练及优化器比较
Apr 28 Python
pycharm设置注释颜色的方法
May 23 Python
python3多线程知识点总结
Sep 26 Python
python  ceiling divide 除法向上取整(或小数向上取整)的实例
Dec 27 Python
pytorch方法测试——激活函数(ReLU)详解
Jan 15 Python
selenium WebDriverWait类等待机制的实现
Mar 18 Python
详解python变量与数据类型
Aug 25 Python
Python爬虫之自动爬取某车之家各车销售数据
Jun 02 Python
详解python异步编程之asyncio(百万并发)
Jul 07 #Python
基于Python开发chrome插件的方法分析
Jul 07 #Python
Python实现基于C/S架构的聊天室功能详解
Jul 07 #Python
Python实现的txt文件去重功能示例
Jul 07 #Python
Django 多语言教程的实现(i18n)
Jul 07 #Python
python利用requests库进行接口测试的方法详解
Jul 06 #Python
python生成密码字典的方法
Jul 06 #Python
You might like
php self,$this,const,static,-&amp;gt;的使用
2009/10/22 PHP
深入php define()函数以及defined()函数的用法详解
2013/06/05 PHP
php中的ini配置原理详解
2014/10/14 PHP
如何在HTML 中嵌入 PHP 代码
2015/05/13 PHP
PHP图像处理类库MagickWand用法实例分析
2015/05/21 PHP
ThinkPHP中使用Ueditor富文本编辑器
2015/09/02 PHP
php gd等比例缩放压缩图片函数
2016/06/12 PHP
thinkphp中的多表关联查询的实例详解
2017/10/12 PHP
php的无刷新操作实现方法分析
2020/02/28 PHP
优化JavaScript脚本的性能的几个注意事项
2006/12/22 Javascript
jquery动态加载js三种方法实例
2013/08/03 Javascript
JS弹出层单纯的绝对定位居中示例代码
2014/02/18 Javascript
jQuery时间轴插件使用详解
2015/07/16 Javascript
浅析JavaScript中的变量复制、参数传递和作用域链
2016/01/13 Javascript
在AngularJS中使用jQuery的zTree插件的方法
2016/04/21 Javascript
AngularJS入门教程之 XMLHttpRequest实例讲解
2016/07/27 Javascript
node下使用UglifyJS压缩合并JS文件的方法
2018/03/07 Javascript
详解react关于事件绑定this的四种方式
2018/03/09 Javascript
vue+element-ui动态生成多级表头的方法
2018/08/28 Javascript
使用React手写一个对话框或模态框的方法示例
2019/04/25 Javascript
使用python编写批量卸载手机中安装的android应用脚本
2014/07/21 Python
Python中的字符串操作和编码Unicode详解
2017/01/18 Python
使用pandas对两个dataframe进行join的实例
2018/06/08 Python
python内打印变量之%和f的实例
2020/02/19 Python
使用CSS3来实现滚动视差效果的教程
2015/08/24 HTML / CSS
Street One瑞士:德国现代时装公司
2019/10/09 全球购物
远东集团网络工程师面试题
2014/10/20 面试题
最新创业融资计划书
2014/01/19 职场文书
优秀管理者获奖感言
2014/02/17 职场文书
高中军训感言800字
2014/03/05 职场文书
关于安全演讲稿
2014/05/09 职场文书
2014组织生活会方案
2014/05/19 职场文书
传承焦裕禄精神思想汇报2014
2014/09/10 职场文书
企业2014年度工作总结
2014/12/10 职场文书
离婚协议书样本
2015/01/26 职场文书
2015年基层党建工作汇报材料
2015/06/25 职场文书