python使用tensorflow深度学习识别验证码


Posted in Python onApril 03, 2018

本文介绍了python使用tensorflow深度学习识别验证码 ,分享给大家,具体如下:

除了传统的PIL包处理图片,然后用pytessert+OCR识别意外,还可以使用tessorflow训练来识别验证码。

此篇代码大部分是转载的,只改了很少地方。

代码是运行在linux环境,tessorflow没有支持windows的python 2.7。

gen_captcha.py代码。

#coding=utf-8
from captcha.image import ImageCaptcha # pip install captcha
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import random

# 验证码中的字符, 就不用汉字了

number = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
alphabet = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u',
      'v', 'w', 'x', 'y', 'z']

ALPHABET = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U',
      'V', 'W', 'X', 'Y', 'Z']
'''
number=['0','1','2','3','4','5','6','7','8','9']
alphabet =[]
ALPHABET =[]
'''

# 验证码一般都无视大小写;验证码长度4个字符
def random_captcha_text(char_set=number + alphabet + ALPHABET, captcha_size=4):
  captcha_text = []
  for i in range(captcha_size):
    c = random.choice(char_set)
    captcha_text.append(c)
  return captcha_text


# 生成字符对应的验证码
def gen_captcha_text_and_image():
  while(1):
    image = ImageCaptcha()

    captcha_text = random_captcha_text()
    captcha_text = ''.join(captcha_text)

    captcha = image.generate(captcha_text)
    #image.write(captcha_text, captcha_text + '.jpg') # 写到文件

    captcha_image = Image.open(captcha)
    #captcha_image.show()
    captcha_image = np.array(captcha_image)
    if captcha_image.shape==(60,160,3):
      break

  return captcha_text, captcha_image






if __name__ == '__main__':
  # 测试
  text, image = gen_captcha_text_and_image()
  print image
  gray = np.mean(image, -1)
  print gray

  print image.shape
  print gray.shape
  f = plt.figure()
  ax = f.add_subplot(111)
  ax.text(0.1, 0.9, text, ha='center', va='center', transform=ax.transAxes)
  plt.imshow(image)

  plt.show()

train.py代码。

#coding=utf-8
from gen_captcha import gen_captcha_text_and_image
from gen_captcha import number
from gen_captcha import alphabet
from gen_captcha import ALPHABET

import numpy as np
import tensorflow as tf

"""
text, image = gen_captcha_text_and_image()
print "验证码图像channel:", image.shape # (60, 160, 3)
# 图像大小
IMAGE_HEIGHT = 60
IMAGE_WIDTH = 160
MAX_CAPTCHA = len(text)
print  "验证码文本最长字符数", MAX_CAPTCHA # 验证码最长4字符; 我全部固定为4,可以不固定. 如果验证码长度小于4,用'_'补齐
"""
IMAGE_HEIGHT = 60
IMAGE_WIDTH = 160
MAX_CAPTCHA = 4

# 把彩色图像转为灰度图像(色彩对识别验证码没有什么用)
def convert2gray(img):
  if len(img.shape) > 2:
    gray = np.mean(img, -1)
    # 上面的转法较快,正规转法如下
    # r, g, b = img[:,:,0], img[:,:,1], img[:,:,2]
    # gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
    return gray
  else:
    return img


"""
cnn在图像大小是2的倍数时性能最高, 如果你用的图像大小不是2的倍数,可以在图像边缘补无用像素。
np.pad(image,((2,3),(2,2)), 'constant', constant_values=(255,)) # 在图像上补2行,下补3行,左补2行,右补2行
"""

# 文本转向量
char_set = number + alphabet + ALPHABET + ['_'] # 如果验证码长度小于4, '_'用来补齐
CHAR_SET_LEN = len(char_set)


def text2vec(text):
  text_len = len(text)
  if text_len > MAX_CAPTCHA:
    raise ValueError('验证码最长4个字符')

  vector = np.zeros(MAX_CAPTCHA * CHAR_SET_LEN)

  def char2pos(c):
    if c == '_':
      k = 62
      return k
    k = ord(c) - 48
    if k > 9:
      k = ord(c) - 55
      if k > 35:
        k = ord(c) - 61
        if k > 61:
          raise ValueError('No Map')
    return k

  for i, c in enumerate(text):
    #print text
    idx = i * CHAR_SET_LEN + char2pos(c)
    #print i,CHAR_SET_LEN,char2pos(c),idx
    vector[idx] = 1
  return vector

#print text2vec('1aZ_')

# 向量转回文本
def vec2text(vec):
  char_pos = vec.nonzero()[0]
  text = []
  for i, c in enumerate(char_pos):
    char_at_pos = i # c/63
    char_idx = c % CHAR_SET_LEN
    if char_idx < 10:
      char_code = char_idx + ord('0')
    elif char_idx < 36:
      char_code = char_idx - 10 + ord('A')
    elif char_idx < 62:
      char_code = char_idx - 36 + ord('a')
    elif char_idx == 62:
      char_code = ord('_')
    else:
      raise ValueError('error')
    text.append(chr(char_code))
  return "".join(text)


"""
#向量(大小MAX_CAPTCHA*CHAR_SET_LEN)用0,1编码 每63个编码一个字符,这样顺利有,字符也有
vec = text2vec("F5Sd")
text = vec2text(vec)
print(text) # F5Sd
vec = text2vec("SFd5")
text = vec2text(vec)
print(text) # SFd5
"""


# 生成一个训练batch
def get_next_batch(batch_size=128):
  batch_x = np.zeros([batch_size, IMAGE_HEIGHT * IMAGE_WIDTH])
  batch_y = np.zeros([batch_size, MAX_CAPTCHA * CHAR_SET_LEN])

  # 有时生成图像大小不是(60, 160, 3)
  def wrap_gen_captcha_text_and_image():
    while True:
      text, image = gen_captcha_text_and_image()
      if image.shape == (60, 160, 3):
        return text, image

  for i in range(batch_size):
    text, image = wrap_gen_captcha_text_and_image()
    image = convert2gray(image)

    batch_x[i, :] = image.flatten() / 255 # (image.flatten()-128)/128 mean为0
    batch_y[i, :] = text2vec(text)

  return batch_x, batch_y


####################################################################

X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT * IMAGE_WIDTH])
Y = tf.placeholder(tf.float32, [None, MAX_CAPTCHA * CHAR_SET_LEN])
keep_prob = tf.placeholder(tf.float32) # dropout


# 定义CNN
def crack_captcha_cnn(w_alpha=0.01, b_alpha=0.1):
  x = tf.reshape(X, shape=[-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1])

  # w_c1_alpha = np.sqrt(2.0/(IMAGE_HEIGHT*IMAGE_WIDTH)) #
  # w_c2_alpha = np.sqrt(2.0/(3*3*32))
  # w_c3_alpha = np.sqrt(2.0/(3*3*64))
  # w_d1_alpha = np.sqrt(2.0/(8*32*64))
  # out_alpha = np.sqrt(2.0/1024)

  # 3 conv layer
  w_c1 = tf.Variable(w_alpha * tf.random_normal([3, 3, 1, 32]))
  b_c1 = tf.Variable(b_alpha * tf.random_normal([32]))
  conv1 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(x, w_c1, strides=[1, 1, 1, 1], padding='SAME'), b_c1))
  conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
  conv1 = tf.nn.dropout(conv1, keep_prob)

  w_c2 = tf.Variable(w_alpha * tf.random_normal([3, 3, 32, 64]))
  b_c2 = tf.Variable(b_alpha * tf.random_normal([64]))
  conv2 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv1, w_c2, strides=[1, 1, 1, 1], padding='SAME'), b_c2))
  conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
  conv2 = tf.nn.dropout(conv2, keep_prob)

  w_c3 = tf.Variable(w_alpha * tf.random_normal([3, 3, 64, 64]))
  b_c3 = tf.Variable(b_alpha * tf.random_normal([64]))
  conv3 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv2, w_c3, strides=[1, 1, 1, 1], padding='SAME'), b_c3))
  conv3 = tf.nn.max_pool(conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
  conv3 = tf.nn.dropout(conv3, keep_prob)

  # Fully connected layer
  w_d = tf.Variable(w_alpha * tf.random_normal([8 * 32 * 40, 1024]))
  b_d = tf.Variable(b_alpha * tf.random_normal([1024]))
  dense = tf.reshape(conv3, [-1, w_d.get_shape().as_list()[0]])
  dense = tf.nn.relu(tf.add(tf.matmul(dense, w_d), b_d))
  dense = tf.nn.dropout(dense, keep_prob)

  w_out = tf.Variable(w_alpha * tf.random_normal([1024, MAX_CAPTCHA * CHAR_SET_LEN]))
  b_out = tf.Variable(b_alpha * tf.random_normal([MAX_CAPTCHA * CHAR_SET_LEN]))
  out = tf.add(tf.matmul(dense, w_out), b_out)
  # out = tf.nn.softmax(out)
  return out


# 训练
def train_crack_captcha_cnn():
  import time
  start_time=time.time()
  output = crack_captcha_cnn()
  # loss
  #loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(output, Y))
  loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=output, labels=Y))
  # 最后一层用来分类的softmax和sigmoid有什么不同?
  # optimizer 为了加快训练 learning_rate应该开始大,然后慢慢衰
  optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)

  predict = tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN])
  max_idx_p = tf.argmax(predict, 2)
  max_idx_l = tf.argmax(tf.reshape(Y, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
  correct_pred = tf.equal(max_idx_p, max_idx_l)
  accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

  saver = tf.train.Saver()
  with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())

    step = 0
    while True:
      batch_x, batch_y = get_next_batch(64)
      _, loss_ = sess.run([optimizer, loss], feed_dict={X: batch_x, Y: batch_y, keep_prob: 0.75})
      print time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())),step, loss_

      # 每100 step计算一次准确率
      if step % 100 == 0:
        batch_x_test, batch_y_test = get_next_batch(100)
        acc = sess.run(accuracy, feed_dict={X: batch_x_test, Y: batch_y_test, keep_prob: 1.})
        print u'***************************************************************第%s次的准确率为%s'%(step, acc)
        # 如果准确率大于50%,保存模型,完成训练
        if acc > 0.9:         ##我这里设了0.9,设得越大训练要花的时间越长,如果设得过于接近1,很难达到。如果使用cpu,花的时间很长,cpu占用很高电脑发烫。
          saver.save(sess, "crack_capcha.model", global_step=step)
          print time.time()-start_time
          break

      step += 1


train_crack_captcha_cnn()

测试代码:

output = crack_captcha_cnn()
saver = tf.train.Saver()
sess = tf.Session()
saver.restore(sess, tf.train.latest_checkpoint('.'))

while(1):
  

  text, image = gen_captcha_text_and_image()
  image = convert2gray(image)
  image = image.flatten() / 255

  predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
  text_list = sess.run(predict, feed_dict={X: [image], keep_prob: 1})
  predict_text = text_list[0].tolist()

  vector = np.zeros(MAX_CAPTCHA * CHAR_SET_LEN)
  i = 0
  for t in predict_text:
    vector[i * 63 + t] = 1
    i += 1
    # break



  print("正确: {} 预测: {}".format(text, vec2text(vector)))

如果想要快点测试代码效果,验证码的字符不要设置太多,例如0123这几个数字就可以了。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python实现在每个独立进程中运行一个函数的方法
Apr 23 Python
插入排序_Python与PHP的实现版(推荐)
May 11 Python
Python中enumerate函数代码解析
Oct 31 Python
Python 比较文本相似性的方法(difflib,Levenshtein)
Oct 15 Python
PyCharm代码回滚,恢复历史版本的解决方法
Oct 22 Python
python使用xlsxwriter实现有向无环图到Excel的转换
Dec 12 Python
详解利用python+opencv识别图片中的圆形(霍夫变换)
Jul 01 Python
10分钟用python搭建一个超好用的CMDB系统
Jul 17 Python
Python如何使用k-means方法将列表中相似的句子归类
Aug 08 Python
django学习之ajax post传参的2种格式实例
May 14 Python
pandas中DataFrame检测重复值的实现
May 26 Python
python实现学生信息管理系统(面向对象)
Jun 05 Python
使用python获取csv文本的某行或某列数据的实例
Apr 03 #Python
python中实现数组和列表读取一列的方法
Apr 03 #Python
numpy.delete删除一列或多列的方法
Apr 03 #Python
取numpy数组的某几行某几列方法
Apr 03 #Python
Python numpy 提取矩阵的某一行或某一列的实例
Apr 03 #Python
python3安装pip3(install pip3 for python 3.x)
Apr 03 #Python
Win7 64位下python3.6.5安装配置图文教程
Oct 27 #Python
You might like
详解WordPress中过滤链接与过滤SQL语句的方法
2015/12/18 PHP
如何批量清理系统临时文件(语言:C#、 C/C++、 php 、python 、java )
2016/02/01 PHP
PHP中for循环与foreach的区别
2017/03/06 PHP
laravel 配置路由 api和web定义的路由的区别详解
2019/09/03 PHP
JavaScript中“基本类型”之争小结
2013/01/03 Javascript
浅谈Javascript中深复制
2014/12/01 Javascript
初识angular框架后的所思所想
2016/02/19 Javascript
JS在一定时间内跳转页面及各种刷新页面的实现方法
2016/05/26 Javascript
JavaScript动态添加事件之事件委托
2016/07/12 Javascript
基于JS实现回到页面顶部的五种写法(从实现到增强)
2016/09/03 Javascript
AngularJS入门教程之路由机制ngRoute实例分析
2016/12/13 Javascript
jQuery中map函数的两种方式
2017/04/07 jQuery
基于Bootstrap表单验证功能
2017/11/17 Javascript
微信小程序之裁剪图片成圆形的实现代码
2018/10/11 Javascript
Fetch超时设置与终止请求详解
2019/05/18 Javascript
NodeJS 文件夹拷贝以及删除功能
2019/09/03 NodeJs
jQuery表单校验插件validator使用方法详解
2020/02/18 jQuery
javascript中可能用得到的全部的排序算法
2020/03/05 Javascript
vue项目使用高德地图的定位及关键字搜索功能的实例代码(踩坑经验)
2020/03/07 Javascript
node.js通过url读取文件
2020/10/16 Javascript
CentOS 8.2服务器上安装最新版Node.js的方法
2020/12/16 Javascript
Python isinstance函数介绍
2015/04/14 Python
在Python的Django框架中使用通用视图的方法
2015/07/21 Python
CentOS安装pillow报错的解决方法
2016/01/27 Python
Django之编辑时根据条件跳转回原页面的方法
2019/08/21 Python
详解基于Scrapy的IP代理池搭建
2020/09/29 Python
CSS 3.0文字悬停跳动特效代码
2020/10/26 HTML / CSS
Crocs卡骆驰洞洞鞋日本官方网站:Crocs日本
2016/08/25 全球购物
Spanx塑身衣官网:美国知名内衣品牌
2017/01/11 全球购物
英国经典球衣网站:Classic Football Shirts
2017/05/20 全球购物
个性发展自我评价
2014/02/11 职场文书
制药工程专业职业生涯规划范文
2014/03/10 职场文书
行政人事主管岗位职责
2015/04/11 职场文书
余世维讲座观后感
2015/06/11 职场文书
JavaScript实现栈结构详细过程
2021/12/06 Javascript
方法汇总:Python 安装第三方库常用
2022/04/26 Python