详细介绍python操作RabbitMq


Posted in Python onApril 12, 2022

一、简介:

RabbitMq 是实现了高级消息队列协议(AMQP)的开源消息代理中间件。消息队列是一种应用程序对应用程序的通行方式,应用程序通过写消息,将消息传递于队列,由另一应用程序读取 完成通信。而作为中间件的 RabbitMq 无疑是目前最流行的消息队列之一。

​ RabbitMq 应用场景广泛:

  • 系统的高可用:日常生活当中各种商城秒杀,高流量,高并发的场景。当服务器接收到如此大量请求处理业务时,有宕机的风险。某些业务可能极其复杂,但这部分不是高时效性,不需要立即反馈给用户,我们可以将这部分处理请求抛给队列,让程序后置去处理,减轻服务器在高并发场景下的压力。
  • 分布式系统,集成系统,子系统之间的对接,以及架构设计中常常需要考虑消息队列的应用。

二、RabbitMq 生产和消费

生产者(producter):队列消息的产生者,负责生产消息,并将消息传入队列

import pika
import json

credentials = pika.PlainCredentials('shampoo', '123456')  # mq用户名和密码
# 虚拟队列需要指定参数 virtual_host,如果是默认的可以不填。
connection = pika.BlockingConnection(pika.ConnectionParameters(host = '10.1.62.170',port = 5672,virtual_host = '/',credentials = credentials))
channel=connection.channel()
# 声明消息队列,消息将在这个队列传递,如不存在,则创建
result = channel.queue_declare(queue = 'python-test')

for i in range(10):
    message=json.dumps({'OrderId':"1000%s"%i})
# 向队列插入数值 routing_key是队列名
    channel.basic_publish(exchange = '',routing_key = 'python-test',body = message)
    print(message)
connection.close()

消费者(consumer):队列消息的接收者,负责 接收并处理 消息队列中的消息

import pika

credentials = pika.PlainCredentials('shampoo', '123456')
connection = pika.BlockingConnection(pika.ConnectionParameters(host = '10.1.62.170',port = 5672,virtual_host = '/',credentials = credentials))
channel = connection.channel()
# 申明消息队列,消息在这个队列传递,如果不存在,则创建队列
channel.queue_declare(queue = 'python-test', durable = False)
# 定义一个回调函数来处理消息队列中的消息,这里是打印出来
def callback(ch, method, properties, body):
    ch.basic_ack(delivery_tag = method.delivery_tag)
    print(body.decode())

# 告诉rabbitmq,用callback来接收消息
channel.basic_consume('python-test',callback)
# 开始接收信息,并进入阻塞状态,队列里有信息才会调用callback进行处理
channel.start_consuming()

三、RabbitMq 持久化

MQ默认建立的是临时 queue 和 exchange,如果不声明持久化,一旦 rabbitmq 挂掉,queue、exchange 将会全部丢失。所以我们一般在创建 queue 或者 exchange 的时候会声明 持久化。

1.queue 声明持久化

# 声明消息队列,消息将在这个队列传递,如不存在,则创建。durable = True 代表消息队列持久化存储,False 非持久化存储
result = channel.queue_declare(queue = 'python-test',durable = True)

2.exchange 声明持久化

# 声明exchange,由exchange指定消息在哪个队列传递,如不存在,则创建.durable = True 代表exchange持久化存储,False 非持久化存储
channel.exchange_declare(exchange = 'python-test', durable = True)

注意:如果已存在一个非持久化的 queue 或 exchange ,执行上述代码会报错,因为当前状态不能更改 queue 或 exchange 存储属性,需要删除重建。如果 queue 和 exchange 中一个声明了持久化,另一个没有声明持久化,则不允许绑定。

3.消息持久化

虽然 exchange 和 queue 都申明了持久化,但如果消息只存在内存里,rabbitmq 重启后,内存里的东西还是会丢失。所以必须声明消息也是持久化,从内存转存到硬盘。

# 向队列插入数值 routing_key是队列名。delivery_mode = 2 声明消息在队列中持久化,delivery_mod = 1 消息非持久化
    channel.basic_publish(exchange = '',routing_key = 'python-test',body = message,
                          properties=pika.BasicProperties(delivery_mode = 2))

4.acknowledgement 消息不丢失

消费者(consumer)调用callback函数时,会存在处理消息失败的风险,如果处理失败,则消息丢失。但是也可以选择消费者处理失败时,将消息回退给 rabbitmq ,重新再被消费者消费,这个时候需要设置确认标识。

channel.basic_consume(callback,queue = 'python-test',
# no_ack 设置成 False,在调用callback函数时,未收到确认标识,消息会重回队列。True,无论调用callback成功与否,消息都被消费掉
                      no_ack = False)

三、RabbitMq 发布与订阅

rabbitmq 的发布与订阅要借助交换机(Exchange)的原理实现:

详细介绍python操作RabbitMq

Exchange 一共有三种工作模式:fanout, direct, topicd

模式一:fanout

这种模式下,传递到 exchange 的消息将会转发到所有与其绑定的 queue 上。

  • 不需要指定 routing_key ,即使指定了也是无效。
  • 需要提前将 exchange 和 queue 绑定,一个 exchange 可以绑定多个 queue,一个queue可以绑定多个exchange。
  • 需要先启动 订阅者,此模式下的队列是 consumer 随机生成的,发布者 仅仅发布消息到 exchange ,由 exchange 转发消息至 queue。

发布者:

import pika
import json

credentials = pika.PlainCredentials('shampoo', '123456')  # mq用户名和密码
# 虚拟队列需要指定参数 virtual_host,如果是默认的可以不填。
connection = pika.BlockingConnection(pika.ConnectionParameters(host = '10.1.62.170',port = 5672,virtual_host = '/',credentials = credentials))
channel=connection.channel()
# 声明exchange,由exchange指定消息在哪个队列传递,如不存在,则创建。durable = True 代表exchange持久化存储,False 非持久化存储
channel.exchange_declare(exchange = 'python-test',durable = True, exchange_type='fanout')
for i in range(10):
    message=json.dumps({'OrderId':"1000%s"%i})
# 向队列插入数值 routing_key是队列名。delivery_mode = 2 声明消息在队列中持久化,delivery_mod = 1 消息非持久化。routing_key 不需要配置
    channel.basic_publish(exchange = 'python-test',routing_key = '',body = message,
                          properties=pika.BasicProperties(delivery_mode = 2))
    print(message)
connection.close()

订阅者:

import pika

credentials = pika.PlainCredentials('shampoo', '123456')
connection = pika.BlockingConnection(pika.ConnectionParameters(host = '10.1.62.170',port = 5672,virtual_host = '/',credentials = credentials))
channel = connection.channel()
# 创建临时队列,队列名传空字符,consumer关闭后,队列自动删除
result = channel.queue_declare('',exclusive=True)
# 声明exchange,由exchange指定消息在哪个队列传递,如不存在,则创建。durable = True 代表exchange持久化存储,False 非持久化存储
channel.exchange_declare(exchange = 'python-test',durable = True, exchange_type='fanout')
# 绑定exchange和队列  exchange 使我们能够确切地指定消息应该到哪个队列去
channel.queue_bind(exchange = 'python-test',queue = result.method.queue)
# 定义一个回调函数来处理消息队列中的消息,这里是打印出来
def callback(ch, method, properties, body):
    ch.basic_ack(delivery_tag = method.delivery_tag)
    print(body.decode())

channel.basic_consume(result.method.queue,callback,# 设置成 False,在调用callback函数时,未收到确认标识,消息会重回队列。True,无论调用callback成功与否,消息都被消费掉
                      auto_ack = False)
channel.start_consuming()

模式二:direct

这种工作模式的原理是 消息发送至 exchange,exchange 根据 路由键(routing_key)转发到相对应的 queue 上。

  • 可以使用默认 exchange =' ' ,也可以自定义 exchange
  • 这种模式下不需要将 exchange 和 任何进行绑定,当然绑定也是可以的。可以将 exchange 和 queue ,routing_key 和 queue 进行绑定
  • 传递或接受消息时 需要 指定 routing_key
  • 需要先启动 订阅者,此模式下的队列是 consumer 随机生成的,发布者 仅仅发布消息到 exchange ,由 exchange 转发消息至 queue。

发布者:

import pika
import json

credentials = pika.PlainCredentials('shampoo', '123456')  # mq用户名和密码
# 虚拟队列需要指定参数 virtual_host,如果是默认的可以不填。
connection = pika.BlockingConnection(pika.ConnectionParameters(host = '10.1.62.170',port = 5672,virtual_host = '/',credentials = credentials))
channel=connection.channel()
# 声明exchange,由exchange指定消息在哪个队列传递,如不存在,则创建。durable = True 代表exchange持久化存储,False 非持久化存储
channel.exchange_declare(exchange = 'python-test',durable = True, exchange_type='direct')

for i in range(10):
    message=json.dumps({'OrderId':"1000%s"%i})
# 指定 routing_key。delivery_mode = 2 声明消息在队列中持久化,delivery_mod = 1 消息非持久化
    channel.basic_publish(exchange = 'python-test',routing_key = 'OrderId',body = message,
                          properties=pika.BasicProperties(delivery_mode = 2))
    print(message)
connection.close()

消费者:

import pika

credentials = pika.PlainCredentials('shampoo', '123456')
connection = pika.BlockingConnection(pika.ConnectionParameters(host = '10.1.62.170',port = 5672,virtual_host = '/',credentials = credentials))
channel = connection.channel()
# 创建临时队列,队列名传空字符,consumer关闭后,队列自动删除
result = channel.queue_declare('',exclusive=True)
# 声明exchange,由exchange指定消息在哪个队列传递,如不存在,则创建。durable = True 代表exchange持久化存储,False 非持久化存储
channel.exchange_declare(exchange = 'python-test',durable = True, exchange_type='direct')
# 绑定exchange和队列  exchange 使我们能够确切地指定消息应该到哪个队列去
channel.queue_bind(exchange = 'python-test',queue = result.method.queue,routing_key='OrderId')
# 定义一个回调函数来处理消息队列中的消息,这里是打印出来
def callback(ch, method, properties, body):
    ch.basic_ack(delivery_tag = method.delivery_tag)
    print(body.decode())


#channel.basic_qos(prefetch_count=1)
# 告诉rabbitmq,用callback来接受消息
channel.basic_consume(result.method.queue,callback,
# 设置成 False,在调用callback函数时,未收到确认标识,消息会重回队列。True,无论调用callback成功与否,消息都被消费掉
                      auto_ack = False)
channel.start_consuming()

模式三:topicd

这种模式和第二种模式差不多,exchange 也是通过 路由键 routing_key 来转发消息到指定的 queue 。 不同点是 routing_key 使用正则表达式支持模糊匹配,但匹配规则又与常规的正则表达式不同,比如“#”是匹配全部,“*”是匹配一个词。

举例:routing_key =“#orderid#”,意思是将消息转发至所有 routing_key 包含 “orderid” 字符的队列中。代码和模式二 类似,就不贴出来了。

以上就是python操作RabbitMq的三种工作模式的详细内容!

Python 相关文章推荐
python 解析XML python模块xml.dom解析xml实例代码
Feb 07 Python
python基础教程之udp端口扫描
Feb 10 Python
Cpy和Python的效率对比
Mar 20 Python
Python对字符串实现去重操作的方法示例
Aug 11 Python
Python(Django)项目与Apache的管理交互的方法
May 16 Python
Python中判断输入是否为数字的实现代码
May 26 Python
解决pandas使用read_csv()读取文件遇到的问题
Jun 15 Python
Python3 安装PyQt5及exe打包图文教程
Jan 08 Python
浅谈Python 多进程默认不能共享全局变量的问题
Jan 11 Python
python自定义线程池控制线程数量的示例
Feb 22 Python
Python3安装psycopy2以及遇到问题解决方法
Jul 03 Python
python 使用多线程创建一个Buffer缓存器的实现思路
Jul 02 Python
Python selenium绕过webdriver监测执行javascript
Apr 12 #Python
Pillow图像处理库安装及使用
Apr 12 #Python
Python各协议下socket黏包问题原理
Apr 12 #Python
Python爬虫网络请求之代理服务器和动态Cookies
Apr 12 #Python
分享Python异步爬取知乎热榜
尝试使用Python爬取城市租房信息
Apr 12 #Python
Python采集爬取京东商品信息和评论并存入MySQL
Apr 12 #Python
You might like
PHP将XML转数组过程详解
2013/11/13 PHP
从零开始学YII2框架(二)通过 Composer 安装扩展插件
2014/08/20 PHP
PHP中strpos、strstr和stripos、stristr函数分析
2016/06/11 PHP
alixixi runcode.asp的代码不错的应用
2007/08/08 Javascript
28个JS验证函数收集
2010/03/02 Javascript
jquery formValidator插件ajax验证 内容不做任何修改再离开提示错误的bug解决方法
2013/01/04 Javascript
利用Javascript判断操作系统的类型实现不同操作系统下的兼容性
2013/01/29 Javascript
深入理解JavaScript系列(29):设计模式之装饰者模式详解
2015/03/03 Javascript
javascript实现复选框选中属性
2015/03/25 Javascript
JS数组去掉重复数据只保留一条的实现代码
2016/08/11 Javascript
javascript使用递归算法求两个数字组合功能示例
2017/01/03 Javascript
基于JavaScript实现带数据验证和复选框的表单提交
2017/08/23 Javascript
Angular.js通过自定义指令directive实现滑块滑动效果
2017/10/13 Javascript
利用angular自动编译andriod APK的绕坑经历分享
2019/03/08 Javascript
vue created钩子函数与mounted钩子函数的用法区别
2020/11/05 Javascript
Vue 3.0中jsx语法的使用
2020/11/13 Javascript
采用Psyco实现python执行速度提高到与编译语言一样的水平
2014/10/11 Python
python实现SMTP邮件发送功能
2020/06/16 Python
python pands实现execl转csv 并修改csv指定列的方法
2018/12/12 Python
python ddt数据驱动最简实例代码
2019/02/22 Python
python快排算法详解
2019/03/04 Python
python实现微信自动回复及批量添加好友功能
2019/07/03 Python
Django实现列表页商品数据返回教程
2020/04/03 Python
Selenium元素定位的30种方式(史上最全)
2020/05/11 Python
HTML5的结构和语义(1):前言
2008/10/17 HTML / CSS
蔻驰英国官网:COACH英国
2020/07/19 全球购物
函授大学生自我鉴定
2014/02/05 职场文书
十八届三中全会学习方案
2014/02/16 职场文书
财产公证书样本
2014/04/04 职场文书
快餐公司创业计划书
2014/04/29 职场文书
机动车登记业务委托书
2014/10/08 职场文书
网站出售协议书范文
2014/10/10 职场文书
稽核岗位职责范本
2015/04/13 职场文书
会议室管理制度范本
2015/08/06 职场文书
中学教代会开幕词
2016/03/04 职场文书
【js设计模式】SOLID五大设计原则
2022/03/24 Javascript